Skip to main content

Advertisement

Log in

Photoelectrochemical study of La2NiO4 synthesized using citrate sol gel method—application for hydrogen photo-production

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The semi conducting properties of La2NiO4 synthesized through sol gel method are studied for the first time using photoelectrochemistry. The X-ray diffraction (XRD) shows that the phase is formed at 900 °C in agreement with the thermal analysis (TG-TDA/DSC). The SEM micrographs exhibit spherical and uniform grains with agglomerated nature, confirmed through laser granulometry. The direct optical gap (1.31 eV) comes from the crystal field splitting of Ni2+ octahedrally coordinated. La2NiO4 is chemically stable in the pH range (5–14) and anodic potentials at pH ~ 12 give rise to surface oxidation of La2NiO4 in the diffusion plateau (0.35–0.6 V). The electrochemical oxygen insertion, studied using chrono-amperometry, is slow with a diffusion coefficient of ~ 2.5 × 10−18 cm2 s−1 at 500 mV. The Mott–Schottky characteristic plotted in alkaline solution (NaOH 0.1 M) indicates p-type conductivity due to oxygen over-stoichiometry well-known in this class of compound. A flat band potential of 0.1 VSCE and hole concentration of 1019 cm−3 were determined from the capacitance measurement. Therefore, the oxide has been successfully tested for the H2 evolution under visible light irradiation. The best activity occurs at pH ~ 13 in presence of S2O32− as reducing agent with H2 liberation rate of 23.6 μmol mn−1 (g catalyst)−1 under visible light flux of 29 mW cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang R, Wu J (2017) Structure and basic properties of ternary metal oxides and their prospects for application in supercapacitors. Metal Oxides Supercapacitors:99–132

  2. Hammache Z, Soukeur A, Omeiri S, Bellal B, Trari M (2019) Physical and photo-electrochemical properties of MgFe2O4 prepared by sol gel route: application to the photodegradation of methylene blue. J Mater Sci Mater Electron 30(6):5375–5382

    Article  CAS  Google Scholar 

  3. Labhasetwar N, Saravanan G, Megarajan SK, Manwar N, Khobragade R, Doggali P, Grasset F (2015) Perovskite-type catalytic materials for environmental applications. Sci Technol Adv Mater 16(3):036002

    Article  Google Scholar 

  4. Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J (2014) Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal 4(9):2917–2940

    Article  CAS  Google Scholar 

  5. Risch M (2017) Perovskite electrocatalysts for the oxygen reduction reaction in alkaline media. Catalysts 7:154

    Article  Google Scholar 

  6. Dimitrovska-Lazova S, Aleksovska S, Mirceski V, Pecovska-Gjorgjevich M (2019) Correlation between composition, electrical and electrochemical properties of LnCo1-xCrxO3 (Ln = Pr, Gd and x = 0, 0.5 and 1) perovskites. J Solid State Electrochem 23(3):861–870

    Article  CAS  Google Scholar 

  7. Kammer Hansen K, Sazinas R (2019) Effect of cobalt on the activity of dual phase “(Gd0.6Sr0.4)0.99Fe1-xCoxO3-δ” SOFC cathodes. J Solid State Electrochem 23(3):965–970

    Article  Google Scholar 

  8. Kanhere P, Chen Z (2014) A review on visible light active perovskite-based photocatalysts. Molecules 19(12):19995–20022

    Article  Google Scholar 

  9. Boudjellal L, Belhadi A, Brahimi R, Boumaza S, Trari M (2018) Physical and photoelectrochemical properties of the ilmenite NiTiO3 prepared by wet chemical method and its application for O2 evolution under visible light. Mater Sci Semicond Process 75:247–252

    Article  CAS  Google Scholar 

  10. Khan Z, Park SO, Yang J, Park S, Shanker R, Song HK, Kim Y, Kwak SK, Ko H (2018) Binary N, S-doped carbon nanospheres from bio-inspired artificial melanosomes: a route to efficient air electrodes for seawater batteries. J Mater Chem A 6(47):24459–24467

    Article  CAS  Google Scholar 

  11. Khan Z, Parveen N, Ansari SA, Senthilkumar ST, Park S, Kim Y, Cho MH, Ko H (2017) Three-dimensional SnS2 nanopetals for hybrid sodium-air batteries. Electrochim Acta 257:328–334

    Article  CAS  Google Scholar 

  12. Li P, Tian C, Yang W, Zhao W, Lu Z (2019) LaNiO3 modified with Ag nanoparticles as an efficient bifunctional electrocatalyst for rechargeable zinc–air batteries. Front Mater Sci 13(3):277–287

    Article  Google Scholar 

  13. Kwon D, Yang I, Sim Y, Ha JM, Jung JC (2019) A K2NiF4-type La2Li0.5Al0.5O4 catalyst for the oxidative coupling of methane (OCM). Catal Commun 128:105702

    Article  CAS  Google Scholar 

  14. Liao Q, Zhuang L, Wei Y, Xue J, Wang H (2018) High oxygen permeation through A-site deficient K2NiF4+δ-type oxide hollow-fiber membrane. Ceram Int 44(9):10852–10857

    Article  CAS  Google Scholar 

  15. Dos Santos-Gómez L, Porras-Vázquez JM, Hurtado J, Losilla ER, Marrero-López D (2019) Stability and electrochemical performance of nanostructured La2CuO4+δ cathodes. J Alloys Compd 788:565–572

    Article  Google Scholar 

  16. Tarutin AP, Lyagaeva JG, Farlenkov AS, Vylkov AI, Medvedev DM (2019) Cu-substituted La2NiO4+δ as oxygen electrodes for protonic ceramic electrochemical cells. Ceram Int 45(13):16105–16112

    Article  CAS  Google Scholar 

  17. Egger A, Schrödl N, Gspan C, Sitte W (2017) La2NiO4+δ as electrode material for solid oxide fuel cells and electrolyzer cells. Solid State Ionics 299:18–25

    Article  CAS  Google Scholar 

  18. Akbari Z, Babaei A, Atai A (2018) Effective enhancement of electrochemical properties of LSM oxygen electrode in SOCs by LNO nano-catalyst infiltration. J Ultrafine Grain Nanostruct Mater 51(1):53–59

    CAS  Google Scholar 

  19. Serrano-Sánchez F, Pinacca R, Troncoso L, Nemes NM, Alonso JA (2018) Large Seebeck coefficients in La2NiO4+δ with tuned δ values. Mater Today Proc 5(4):10203–10210

    Article  Google Scholar 

  20. Acrivos JV, Chen Lei M, Jiang C, Nguyen H, Metcalf P, Honig JM (1994) Paramagnetism, antiferromagnetism and superconductivity in La2NiO4. J Solid State Chem 111(2):343–348

    Article  CAS  Google Scholar 

  21. Lahmar H, Trari M (2015) Photocatalytic generation of hydrogen under visible light on La2CuO4. Bull Mater Sci 38(4):1043–1048

    Article  CAS  Google Scholar 

  22. Boumaza S, Boudjemaa A, Omeiri S, Bouarab R, Bouguelia A, Trari M (2010) Physical and photoelectrochemical characterizations of hematite α-Fe2O3: application to photocatalytic oxygen evolution. Sol Energy 84:715–721

    Article  CAS  Google Scholar 

  23. Odier P, Leblanc M, Choisnet J (1986) Structural characterization of an orthorhombic form of La2NiO4. Mater Res Bull 21(7):787–796

    Article  CAS  Google Scholar 

  24. Goldschmidt VM (1926) Matemot Naturuid, Klass N°2

  25. Fontaine ML, Laberty-Robert C, Verelst M, Pielaszeck J, Lenormand P, Anart F, Tailhades P (2006) Mater Res Bull 41(9):1747

    Article  CAS  Google Scholar 

  26. Khetre SM (2013) J Mater Sci Mater Electron 24(4):1213

    Article  CAS  Google Scholar 

  27. Pankov JI (1971) Optical process in semiconductors, (Butterworths, London, U.K.) Ch-11

  28. Sanchez RD, Torresi RM, Rettori C, Oseroff S, Fisk Z (1995) Electrochemical intercalation of O2− in La2CuO4 single crystals. Electrochim Acta 40(2):209–212

    Article  CAS  Google Scholar 

  29. Sahmi A, Laib R, Omeiri S, Bensadok K, Trari M (2018) Photoelectrochemical properties of the perovskite BaSnO3 synthetized by chemical route. Application to electro-photocatalytic mineralization of ibuprofen. J Photochem Photobiol A Chem 364:443–448

    Article  CAS  Google Scholar 

  30. F Arrouy (1992) Ph. D Thesis Bordeaux

    Google Scholar 

  31. Wells BO, Birgeneau RJ, Chou FC, Endoh Y, Johnston DC, Kastner MA, Lee YS, Shirane G, Tranquada JM, Yamada K (1996) Intercalation and staging behavior in super-oxygenated La2CuO4+δ.Z. Phys B 100:535–545

    CAS  Google Scholar 

  32. Jiang Z, Huang S, Qian B (1994) Semiconductor properties of Ag2O film formed on the silver electrode in 1 M NaOH solution. Electrochim Acta 39:2465–2470

    Article  CAS  Google Scholar 

  33. Liu XQ, Song CL, Wu YJ, Chen XM (2011) Ceram Int 37(7):2423–2427

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. B. Bellal for his technical assistance.

Funding

The financial support was provided by the Faculty of Chemistry (USTHB, Algiers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Boumaza.

Additional information

Dedicated to the memory of Ivo Alexandre Hümmelgen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boumaza, S., Brahimi, R., Boudjellal, L. et al. Photoelectrochemical study of La2NiO4 synthesized using citrate sol gel method—application for hydrogen photo-production. J Solid State Electrochem 24, 329–337 (2020). https://doi.org/10.1007/s10008-019-04470-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04470-8

Keywords

Navigation