Skip to main content
Log in

Aqueous Solution of a Basic Ionic Liquid: A Perspective Solvent for Extraction and Regeneration of Silk Powder from Bombyx mori Silk Cocoons

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The rationale behind this study was to investigate the potential new low cost and biocompatible aqueous choline based ionic liquid for dissolution and regeneration of silk fibroin obtained from the mulberry silkworm. The silk due to its high biocompatibility and mechanical properties finds many applications in the field of biomedical science. Earlier, silk extraction methods have issues of either extraction efficiency or environmental concerns. The ionic liquid is a relatively green solvent was used to dissolve silk fibroin and optimized the process with respect to variables like temperature, time, stirring speed, type of ionic liquid and maximum dissolution ability. The dissolution process was observed through the naked eye as well as using optical microscopy. The optimized conditions at which maximum dissolution i.e. 25% was obtained, are heating the mixture at 50 °C for 2 h. Various analytical characterization such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), Zeta potential, nuclear magnetic resonance (1H NMR) and thermogravimetric analysis (TGA) was performed for cocoon, fiber and regenerated silk powder in order to understand the effect of ionic liquid treatment. FTIR, NMR and Raman spectra shows the characteristic peaks assigned to the silk. SEM analysis shows nanoparticles of silk fibroin powder. The crystallinity and thermal stabilities were decreased for regenerated silk as observed from XRD and TGA analysis. The nano-silk exhibited a zeta potential of − 24.6 ± 3 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sionkowska A, Płanecka A (2013) Preparation and characterization of silk fibroin/chitosan composite sponges for tissue engineering. J Mol Liq 178:5–14

    Article  CAS  Google Scholar 

  2. Hu X, Kaplan D, Cebe P (2006) Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules 39(18):6161–6170

    Article  CAS  Google Scholar 

  3. Shao Z, Vollrath F (2002) Materials: surprising strength of silkworm silk. Nature 418(6899):741

    Article  CAS  Google Scholar 

  4. Zhou C-Z et al (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res 28(12):2413–2419

    Article  CAS  Google Scholar 

  5. Yamaguchi K et al (1989) Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. J Mol Biol 210(1):127–139

    Article  CAS  Google Scholar 

  6. Tanaka K et al (1999) Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochim Biophys Acta (BBA) 1432(1):92–103

    Article  CAS  Google Scholar 

  7. Phillips DM et al (2004) Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. J Am Chem Soc 126(44):14350–14351

    Article  CAS  Google Scholar 

  8. Knowles TP et al (2007) Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318(5858):1900–1903

    Article  CAS  Google Scholar 

  9. He Y-X et al (2012) N-terminal domain of Bombyx mori fibroin mediates the assembly of silk in response to pH decrease. J Mol Biol 418(3–4):197–207

    Article  CAS  Google Scholar 

  10. Rockwood DN et al (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612

    Article  CAS  Google Scholar 

  11. Passos H, Freire MG, Coutinho JA (2014) Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chem 16(12):4786–4815

    Article  CAS  Google Scholar 

  12. Asim AM et al (2019) Acidic ionic liquids: promising and cost-effective solvents for processing of lignocellulosic biomass. J Mol Liq 287(1):110943

    Article  Google Scholar 

  13. Goujon N et al (2012) Regenerated silk fibroin using protic ionic liquids solvents: towards an all-ionic-liquid process for producing silk with tunable properties. Chem Commun 48(9):1278–1280

    Article  CAS  Google Scholar 

  14. Iqbal B et al (2017) An application of ionic liquid for preparation of homogeneous collagen and alginate hydrogels for skin dressing. J Mol Liq 243:720–725

    Article  CAS  Google Scholar 

  15. Fox D et al (2007) The preparation and characterization of Bombyx mori silk nanocomposites using ionic liquids. ECS Trans 3(35):11–20

    Article  CAS  Google Scholar 

  16. Xu Y et al (2005) Solubility and rheological behavior of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide. Int J Biol Macromol 35(3–4):155–161

    Article  CAS  Google Scholar 

  17. Chen J et al (2014) What happens during natural protein fibre dissolution in ionic liquids. Materials (Basel, Switzerland) 7(9):6158–6168

    Article  CAS  Google Scholar 

  18. Iqbal J et al (2019) COSMO-RS predictions, hydrogen bond basicity values and experimental evaluation of amino acid-based ionic liquids for lignocellulosic biomass dissolution. J Mol Liq 273:215–221

    Article  CAS  Google Scholar 

  19. Naidu R, Zhang Y, Kim I (2017) Highly efficient green synthesis of α-hydroxyphosphonates using recyclable choline hydroxide catalyst. New J Chem 41:5373–5379

    Article  Google Scholar 

  20. Hanley M et al (2007) Amino acid based ionic liquids: solvents for improved biopolymer dissolution. ECS Trans 3(35):41–48

    Article  CAS  Google Scholar 

  21. Cho H-J, Um I-C (2010) The effect of dissolution condition on the yield, molecular weight, and wet-and electro-spinnability of regenerated silk fibroins prepared by LiBr aqueous solution. Int J Ind Entomol 20(2):99–105

    Google Scholar 

  22. Zhu J et al (2008) Electrospinning and rheology of regenerated Bombyx mori silk fibroin aqueous solutions: the effects of pH and concentration. Polymer 49(12):2880–2885

    Article  CAS  Google Scholar 

  23. You R et al (2013) The degradation behavior of silk fibroin derived from different ionic liquid solvents. Nat Sci 5(06):10

    CAS  Google Scholar 

  24. Wang H-Y, Zhang Y-Q (2013) Effect of regeneration of liquid silk fibroin on its structure and characterization. Soft Matter 9(1):138–145

    Article  CAS  Google Scholar 

  25. Whittaker JL et al (2014) Facile and rapid ruthenium mediated photo-crosslinking of Bombyx mori silk fibroin. J Mater Chem B 2(37):6259–6270

    Article  CAS  Google Scholar 

  26. Yang R et al (2018) A novel method to prepare tussah/Bombyx mori silk fibroin-based films. RSC Adv 8(39):22069–22077

    Article  CAS  Google Scholar 

  27. Kamalha E et al (2013) FTIR and WAXD study of regenerated silk fibroin. In: Advanced materials research. Trans Tech Publications, Pfaffikon

    Article  CAS  Google Scholar 

  28. Frushour BG, Koenig JL (1975) Raman scattering of collagen, gelatin, and elastin. Biopolymers 14(2):379–391

    Article  CAS  Google Scholar 

  29. Monti P et al (1998) Raman spectroscopic studies of silk fibroin from Bombyx mori. J Raman Spectrosc 29(4):297–304

    Article  CAS  Google Scholar 

  30. Ishida M et al (1990) Solvent-induced and mechanical-treatment-induced conformational-transition of silk fibroins studied by high-resolution solid-state C-13 NMR-spectroscopy. Macromolecules 23(1):88–94

    Article  CAS  Google Scholar 

  31. Monti P et al (2001) Raman spectroscopic characterization of Bombyx mori silk fibroin: Raman spectrum of Silk I. J Raman Spectrosc 32(2):103–107

    Article  CAS  Google Scholar 

  32. Muhammad N et al (2017) Investigation of ionic liquids as a pretreatment solvent for extraction of collagen biopolymer from waste fish scales using COSMO-RS and experiment. J Mol Liq 232:258–264

    Article  CAS  Google Scholar 

  33. Kim U-J et al (2005) Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26(15):2775–2785

    Article  CAS  Google Scholar 

  34. Ha S-W, Park YH, Hudson SM (2003) Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate–methanol system and aspects of wet spinning of fibroin solution. Biomacromolecules 4(3):488–496

    Article  CAS  Google Scholar 

  35. Lozano-Pérez AA et al (2015) Production of silk fibroin nanoparticles using ionic liquids and high-power ultrasounds. J Appl Polym Sci 132:1–8

    Google Scholar 

  36. Murphy AR, John PS, Kaplan DL (2008) Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 29(31):2829

    Article  CAS  Google Scholar 

  37. Zainuddin et al (2008) The behavior of aged regenerated Bombyx mori silk fibroin solutions studied by H-1 NMR and rheology. Biomaterials 29(32):4268–4274

    Article  CAS  Google Scholar 

  38. Kweon H, Park YH (2001) Dissolution and characterization of regenerated Antheraea pernyi silk fibroin. J Appl Polym Sci 82(3):750–758

    Article  CAS  Google Scholar 

  39. Kweon H, Um I, Park Y (2000) Thermal behavior of regenerated Antheraea pernyi silk fibroin film treated with aqueous methanol. Polymer 41(20):7361–7367

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Higher Education Pakistan (NRPU No. 4099) and Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore campus, 54000, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nawshad Muhammad, Muhammad Arfat Yameen or Hamad Khalid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samie, M., Muhammad, N., Yameen, M.A. et al. Aqueous Solution of a Basic Ionic Liquid: A Perspective Solvent for Extraction and Regeneration of Silk Powder from Bombyx mori Silk Cocoons. J Polym Environ 28, 657–667 (2020). https://doi.org/10.1007/s10924-019-01634-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01634-5

Keywords

Navigation