Skip to main content
Log in

N-H…O, C-H… O hydrogen-bonded supramolecular frameworks in 4-fluoroanilinium and dicyclohexylaminium picrate salts

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The asymmetric unit of compound (I), 4-fluoroanilinium picrate, C6H7NF+.C6H2N3O7 contain one 4-fluoroanilinium cation and one picrate anion whereas in compound (II), dicyclohexylaminium picrate, C12H22N+.C6H2N3O7 the asymmetric unit contains two sets of dicyclohexylaminium cation and picrate anion due to conformational difference between the molecules. In (I), all three nitro groups of the picrate anion are positionally disordered over two sites refined to major and minor components. The molecular ions of (I), interlinked through N–H‧‧‧O and C–H‧‧‧O hydrogen bonds forming two-dimensional supramolecular sheet along (-1 0 1) plane. Whereas in (II), the symmetry-independent molecules labeled as A and B molecule form independent one-dimensional supramolecular tape extending along (1 1 0) and (1 0 0) direction. The supramolecular tapes are interlinked through C–H‧‧‧O interaction to form three-dimensional network in the crystalline solid in (II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mishra R, Pallepogu R (2018). Acta Crystallogr B74:32–41

    Google Scholar 

  2. Cruz-Cabeza AJ, Schwalbe CH (2012). New J Chem 36:1347–1354

    Article  CAS  Google Scholar 

  3. Sarma JARP, Desiraju GR (2002) Cryst. Growth Des 2(2):93–100

    Article  CAS  Google Scholar 

  4. Goel S, Yadav H, Sinha N, Singh B, Bdikin I, Kumar B (2018). Acta Crystallogr B74:12–23

    Google Scholar 

  5. Li L, Liu ZF, Wu WX, Jin WJ (2018). Acta Crystallogr B74:610–617

    Google Scholar 

  6. Swinton Darious R, Thomas Muthiah P, Perdih F (2018). Acta Crystallogr C74:487–503

    Google Scholar 

  7. Acosta Quintero LM, Palma A, Cobo J, Glidewell C (2005). Acta Crystallogr C72:346–357

    Google Scholar 

  8. Elmosallamy MAF (2004). Anal Sci 20:285–290

    Article  CAS  PubMed  Google Scholar 

  9. Saminathan K, Muthamizhchelvan C, Sivakumar K (2005). Acta Crystallogr E61:o4379–o4381

    Google Scholar 

  10. Muthamizhchelvan C, Saminathan K, SethuSankar K, Sivakumar K (2005). Acta Crystallogr E61:o3605

    Google Scholar 

  11. Anitha V, Athimoolam S, Natarajan S (2006). Acta Crystallogr C62:o567–o570

    CAS  Google Scholar 

  12. Thanigaimani K, Subashini A, Thomas Muthiah P, Lynch DE, Butcher RJ (2009). Acta Crystallogr C65:o42–o45

    Google Scholar 

  13. Rajesh K, Arun A, Mani A, Praveen Kumar P (2016). Mat Res Exp 3(10):106203

    Article  Google Scholar 

  14. Srinivasan P, Kanagasekaran T, Gopalakrishnan R, Bhagavannarayana G, Ramasamy P (2006). Cryst Growth Des 6(7):1663–1670

    Article  CAS  Google Scholar 

  15. Harms K, Wocadlo S (1995) XCAD4. University of Marburg, Germany

    Google Scholar 

  16. North ACT, Phillips DC, Mathews FS (1968). Acta Crystallogr A24:351–359

    Article  Google Scholar 

  17. Sheldrick GM (2015). Acta Crystallogr C71:3–8

    Google Scholar 

  18. Farrugia LJ (1997). J Appl Crystallogr 30:565

    Article  CAS  Google Scholar 

  19. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streekand J, Wood PA (2008). J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  20. Kavitha SJ, Panchanatheswaran K, Low JN, Ferguson G, Glidewell C (2006). Acta Crystallogr C62:o165–o169

    CAS  Google Scholar 

  21. Vembu N, Nallu M, Garrison J, Youngs WJ (2003). Acta Crystallogr E59:o913–o916

    Google Scholar 

  22. Li Y, Zhao B (2009). Acta Crystallogr E65:o3218

    Google Scholar 

  23. Churakov AV, Chetina OV, Howard JAK (2006). Acta Crystallogr E62:o3503–o3505

    Google Scholar 

  24. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995). Angew Chem Int Ed Engl 34:1555–1575

    Article  CAS  Google Scholar 

  25. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016). Acta Crystallogr B72:171–179

    Google Scholar 

  26. Jin S, Wang D (2013). J Mol Struct 1037:242–255

    Article  CAS  Google Scholar 

  27. Smith G, Wermuth UD, Healy PC (2004). Acta Crystallogr E60:o1800

    Google Scholar 

  28. Tanaka M, Matsui H, Mizoguchi JI, Kashino S (1994). Bull Chem Soc Jpn 67:1572–1579

    Article  CAS  Google Scholar 

  29. Muthu K, Meenakshisundaram S (2012). J Cryst Growth 352:163–166

    Article  CAS  Google Scholar 

  30. Muthamizhchelvan C, Saminathan K, Fraanje J, Peschar R, Sivakumar K (2005). Acta Crystallogr E61:o1153–o1155

    Google Scholar 

  31. Li H, Yathirajan HS, Mallesha L, Mohana KN, Narayana B (2009). Acta Crystallogr E65:o783

    Google Scholar 

  32. Goel N, Singh UP, Singh G, Srivastava P (2013). J Mol Struct 1036:427–438

    Article  CAS  Google Scholar 

  33. Suguna S, Anbuselvi D, Jayaraman D, Nagaraja K (2014) S, Jeyaraj B. Spectro chim Acta A132:330–338

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagan Rajamoni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolandaivelu, S., Rajamoni, J. & Kandasamy, S. N-H…O, C-H… O hydrogen-bonded supramolecular frameworks in 4-fluoroanilinium and dicyclohexylaminium picrate salts. Struct Chem 31, 899–908 (2020). https://doi.org/10.1007/s11224-019-01471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01471-1

Keywords

Navigation