Skip to main content
Log in

Experimental analysis of condensation heat transfer and frictional pressure drop in a horizontal circular mini channel

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present study aims to investigate the effect of working fluid, mass flux, vapour quality and saturation temperature on local condensation Heat Transfer Coefficient (HTC) and local Frictional Pressure Drop (FPD) in a horizontal circular mini-channel. The refrigerants HFO-1234yf and HFC-R134a have been used as a working fluids. The mass flux was varied from 200 to 800 kg/m2 s whereas two distinct saturation temperatures were used: 35 °C and 40 °C. The experimental analysis was carried out using horizontal circular single port mini-channel of hydraulic diameter 1 mm. During experiment, inlet condition of refrigerant was maintained to be saturated vapour. The results show that HTC and FPD increases with increase in vapour quality and mass flux whereas decreases with increase in saturation temperature. The experiment results of present study and previously published results are compared with various predictive models. Models which show minimum deviation from experimental results were used to develop new modified model to predict HTC with MARD of ± 15 % and FPD with MARD of ± 10 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

As :

Heat transfer area, m2

Ao :

Cross sectional area or free flow area, m2

A1, A2:

Moser’s constant

Bo:

Bond number

C:

Lockhart-Martinelli coefficient

Ca:

Capillary number

Co:

Confinement number

Cou:

Courant number

C1, C2:

Cavallini’s constant

Cp :

Specific heat at constant pressure, kJ/kg K

Cv :

Specific heat at constant volume, kJ/kg K

D, d:

hydraulic channel diameter, mm

E:

entrainment ratio

F:

Frictional

Fr:

Froude number

g:

Gravitational acceleration, m/s2

G:

Mass flux, kg/m2s

Ga:

Galileo number

h:

Heat transfer coefficient, W/m2K

h lv :

Heat of vaporization, kJ/kg

k:

Thermal conductivity, W/m K

k :

Turbulent kinetic energy, m2/s2

L:

Characteristic Length, m

\( \dot{m} \) :

mass flow rate, kg/s

Nu:

Nusselt Number

p:

Pressure, bar

p1 :

Condenser inlet pressure, bar

p2 :

Condenser outlet pressure, bar

Pr:

Prandtl Number

Prw :

Prandtl Number at wall

Pred :

Reduced pressure

\( \dot{Q} \) :

Volume flow rate, m3/s

q:

Heat flux, kW/m2

Re:

Reynolds number

S:

source term

T:

Temperature, °C

Tsat :

Saturated temperature, °C

Twall :

Wall temperature, °C

t:

Thickness, mm

u:

velocity, m/s

v :

Specific volume, m3/kg

We:

Weber number

Xtt :

Martinelli parameter

x:

Vapour quality

CFCs :

Chlorofluorocarbons

CFD:

Computational fluid dynamics

CHE:

Compact heat exchanger

CB:

Coalescing bubble

CNC:

Computerized numerical controlled

CSF:

Continuum surface force

DME:

Dimethyl Ether

FPD:

Frictional pressure drop

GWP:

Global warming potential

HTC:

Heat transfer coefficient

HT :

Heat transfer

HCFC:

hydrochlorofluorocarbans

HFC:

hydrofluorocarbons

HEM:

Homogeneous Equilibrium Model

HFO:

hydrofluoroolfine

MARD:

Mean absolute relative deviation

MRD :

Mean relative deviation

PD:

Pressure drop

ST:

Surface tension

USB:

Universal serial bus

δ:

Liquid film thickness, μm

ε:

Rate of turbulent dissipation, m2/m3

σ:

Surface tension, N/m

J:

Super facial velocity, m/s

ƒ:

Friction factor

τ :

Shear stress, N/m2

μ:

Dynamic viscosity, N s/m2

ϑ:

Kinematic viscosity, m2/s

ρ:

Density of condensate film, kg/m3

χtt:

Lockhart-Martinelli parameter

φ:

Vapour two phase pressure drop multiplier

α:

Void fraction or Volume fraction

Є:

Zivi’s void fraction

Γ:

Effective thermal diffusivity, m2/s

\( {\mathrm{j}}_{\mathrm{g}}^{\ast } \) :

Non-dimensional gas velocity

β:

Volumetric quality

ω:

Specific dissipation rate, 1/s

References

  1. Poggi F, Macchi-Tejeda H, Leducq D, Bontemps A (2008) Refrigerant charge in refrigerating systems and strategies of charge reduction. Int J Refrig 31:353–370. https://doi.org/10.1016/j.ijrefrig.2007.05.014

    Article  Google Scholar 

  2. C.B. Sobhan, C.B. Sobhan, SV Garimella (2001) A comparative analysis of studies on heat transfer and fluid flow in microchannels, Microscale Thermophysical Engineering, Taiylor & Francis

  3. English NJ, Kandlikar SG (2006) An experimental investigation into the effect of surfactants on air-water two-phase flow in minichannels. Heat Transfer Engineering 27:99–109. https://doi.org/10.1080/01457630500523980

    Article  Google Scholar 

  4. Yang CY, Webb RL (1996) Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins. Int J Heat Mass Transf 39:801–809. https://doi.org/10.1016/0017-9310(95)00151-4

    Article  Google Scholar 

  5. Crosser OK (1955) Condensing heat transfer within horizontal tubes, Engineering, Chemical. Doctoral

  6. Shah MM (1979) A general correlation for heat transfer during film condensation inside pipes. Int J Heat Mass Transf 22:547–556

    Article  Google Scholar 

  7. Zhang M, Webb RL (1998) Condensation heat transfer in small diameter tubes. Heat Transfer Engineering:403–408

  8. Moser KW, Webb RL, Na B (1998) A new equivalent Reynolds number model for condensation in smooth tubes. J Heat Transf 120:410. https://doi.org/10.1115/1.2824265

    Article  Google Scholar 

  9. Kim MH, Shin JS, Huh C, Kim TJ, Seo KW (2003) A study of condensation heat transfer in a single mini-tube and a review of Korean micro- and mini-channel studies. First International Conference on Microchannels and Minichannels:47–58

  10. Kuwahara K, Nakashita K, Koyama S (2003) Condensation of refrigerant in a multi-port channel. In: First International Conference on Microchannels and Minichannels, pp. 193–205

  11. Yang CY, Webb RL (1997) A predictive model for condensation in small hydraulic diameter tubes having axial micro-fins. J Heat Transf 119:776–782. https://doi.org/10.1115/1.2824182

    Article  Google Scholar 

  12. Matkovič M, Cavallini A, Bortolin S, Del Col D, Rossetto L (2008) Heat transfer coefficient during condensation of a high pressure refrigerant inside a circular minichannel, 5th European Thermal-Sciences Conference, 1–8

  13. Cavallini A, Del Col D, Rossetto L (2013) Heat transfer and pressure drop of natural refrigerants in minichannels (low charge equipment). Int J Refrig 36:287–300. https://doi.org/10.1016/j.ijrefrig.2012.11.005

    Article  Google Scholar 

  14. Park JE, Vakili-Farahani F, Consolini L, Thome JR (2011) Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze(E) versus R134a and R236fa. Exp Thermal Fluid Sci 35:442–454. https://doi.org/10.1016/j.expthermflusci.2010.11.006

    Article  Google Scholar 

  15. Agarwal A, Bandhauer TM, Garimella S (2010) Measurement and modeling of condensation heat transfer in non-circular microchannels. Int J Refrig 33:1169–1179. https://doi.org/10.1016/j.ijrefrig.2009.12.033

    Article  Google Scholar 

  16. Soliman HM (1986) The m i s t - a n n u l a r transition during condensation and its influence on the heat transfer mechanism. Int J Multiphase Flow 12:277–288

    Article  Google Scholar 

  17. Derby MM, Chatterjee A, Peles Y, Jensen MK (2014) Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns. Int J Heat Mass Transf 68:151–160. https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.024

    Article  Google Scholar 

  18. Zhao CR, Jiang PX, Zhang YW (2011) Flow and convection heat transfer characteristics of CO2 mixed with lubricating oil at super-critical pressures in small tube during cooling. Int J Refrig 34:29–39. https://doi.org/10.1016/j.ijrefrig.2010.06.013

    Article  Google Scholar 

  19. Shao DW, Granryd E (1995) Heat transfer and pressure drop of HFC134a-oil mixtures in a horizontal condensing tube. Int J Refrig 18:524–533. https://doi.org/10.1016/0140-7007(96)81779-8

    Article  Google Scholar 

  20. Bohdal T, Charun H, Sikora M (2011) Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels. Int J Heat Mass Transf 54:1963–1974. https://doi.org/10.1016/j.ijheatmasstransfer.2011.01.005

    Article  Google Scholar 

  21. Crosser OK, Akers WW, Deans HA (1959) Condensation Heat Transfer within Horizontal Tubes. Chem Eng Prog 55:171–176

    Google Scholar 

  22. Friedel L (1979) Improved friction pressure drop correlations for horizontal and vertical two phase pipe flow. In: European Two-Phase Flow Group Meeting, pp. 485–491

  23. Garimella S (2004) Condensation flow mechanisms in microchannels: basis for pressure drop and heat transfer models. Heat Transfer Engineering 25:104–116. https://doi.org/10.1080/01457630490280489

    Article  Google Scholar 

  24. Cavallini A, Doretti L, Rossetto L, Zilio C (2005) A model for condensation inside mini-channels. ASME Summer Heat Transfer Conference:1–8

  25. Zhang M, Webb RL (2001) Correlation of two-phase friction for refrigerants in small-diameter tubes. Exp Thermal Fluid Sci 25:131–139. https://doi.org/10.1016/S0894-1777(01)00066-8

    Article  Google Scholar 

  26. Al-Hajri E, Shooshtari AH, Dessiatoun S, Ohadi MM (2013) Performance characterization of R134a and R245fa in a high aspect ratio microchannel condenser. Int J Refrig 36:588–600. https://doi.org/10.1016/j.ijrefrig.2012.10.007

    Article  Google Scholar 

  27. López-Belchí A, Illán-Gómez F, Vera-García F, García-Cascales JR (2014) Experimental condensing two-phase frictional pressure drop inside mini-channels: Comparisons and new model development. Int J Heat Mass Transf 75:581–591. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.003

    Article  Google Scholar 

  28. Liu N, Xiao H, Li J (2016) Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze(E) and R22 in minichannels. Appl Therm Eng 102:63–72. https://doi.org/10.1016/j.applthermaleng.2016.03.073

    Article  Google Scholar 

  29. Del Col D, Bortolato M, Azzolin M, Bortolin S (2015) Condensation heat transfer and two-phase frictional pressure drop in a single minichannel with R1234ze(E) and other refrigerants. Int J Refrig 50:87–103. https://doi.org/10.1016/j.ijrefrig.2014.10.022

    Article  Google Scholar 

  30. Illán-Gómez F, López-Belchí A, García-Cascales JR, Vera-García F (2015) Experimental two-phase heat transfer coefficient and frictional pressure drop inside mini-channels during condensation with R1234yf and R134a. Int J Refrig 51:12–23. https://doi.org/10.1016/j.ijrefrig.2014.11.014

    Article  Google Scholar 

  31. López-Belchí A, Illán-Gómez F (2017) Evaluation of a condenser based on mini-channels technology working with R410A and R32: Experimental data and performance estimate. Appl Energy 202:112–124. https://doi.org/10.1016/j.apenergy.2017.05.122

    Article  Google Scholar 

  32. Wen J, Gu X, Wang S, Li Y, Tu J (2018) The comparison of condensation heat transfer and frictional pressure drop of R1234ze(E), propane and R134a in a horizontal mini-channel. Int J Refrig 92:208–224. https://doi.org/10.1016/J.IJREFRIG.2018.03.006

    Article  Google Scholar 

  33. Wen T, Zhan H, Zhang D (2019) Flow condensation heat transfer characteristics of R134a in multiport mini-channel by jet impingement cooling. Appl Therm Eng 147:399–409. https://doi.org/10.1016/j.applthermaleng.2018.10.111

    Article  Google Scholar 

  34. McLinden MO, Lemmon EW, Huber ML (2010) NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version 9.0

  35. William Wang WW, Radcliff TD, Christensen RN (2002) A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition. Exp Thermal Fluid Sci 26:473–485. https://doi.org/10.1016/S0894-1777(02)00162-0

    Article  Google Scholar 

  36. Zivi SM (1975) Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production. Trans ASME J Heat Transf C 86:247–252

    Article  Google Scholar 

  37. Cavallini A, Doretti L, Matkovic M, Rossetto L (2006) Update on condensation heat transfer and pressure drop inside minichannels. Heat Transfer Engineering 27:74–87. https://doi.org/10.1080/01457630500523907

    Article  Google Scholar 

  38. Garimella S (2004) Condensation flow mechanisms, pressure drop and heat transfer in microchannels. Microscale Heat Transfer:273–290

  39. Baroczy CJ (1965) Correlation of liquid fraction in two-phase flow with applications to liquid metals. Chem Eng Prog Symp 61:179–191

    Google Scholar 

  40. Cavallini A, Del Col D, Matkovic M, Rossetto L (2009) Frictional pressure drop during vapour-liquid flow in minichannels: Modelling and experimental evaluation. Int J Heat Fluid Flow 30:131–139. https://doi.org/10.1016/j.ijheatfluidflow.2008.09.003

    Article  Google Scholar 

  41. Filippovich BS, Paleev II (1966) Phenomena of Liquid Transfer in Two-Phase Dispersed Annular Flow. International Journal of Heat Heat Transfer 9:1089–1093

    Article  Google Scholar 

  42. Garimella JKS, Agarwal A (2005) Condensation pressure drop in circular microchannels. Heat Transfer Engineering 26:28–35. https://doi.org/10.1080/01457630590907176

    Article  Google Scholar 

  43. Tran TN, Chyu MC, Wambsganss MW, France DM (2000) Two-phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development. Int J Multiphase Flow 26:1739–1754. https://doi.org/10.1016/S0301-9322(99)00119-6

    Article  MATH  Google Scholar 

  44. Del Col D, Doretti L, Longo GA, Rossetto L (2002) Condensation of halogenated refrigerants inside smooth tubes. HVAC and R Research 8:429–451. https://doi.org/10.1080/10789669.2002.10391299

    Article  Google Scholar 

  45. Kim SM, Kim J, Mudawar I (2012) Flow condensation in parallel micro-channels - part 1: experimental results and assessment of pressure drop correlations. Int J Heat Mass Transf 55:971–983. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.013

    Article  MATH  Google Scholar 

  46. Lockhart RC, Martinelli RW (1949) Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes. Chem Eng Prog 45:38–48

    Google Scholar 

  47. Kline S, Mcclintock F (1953) Describing Uncertainties in Single-Sample Experiments. 10.1111/jcmm.13453

  48. Coleman JW, Garimella S (1999) Characterization of two-phase flow patterns in small diameter round and rectangular tubes. Int J Heat Mass Transf 42:2869–2881. https://doi.org/10.1016/S0017-9310(98)00362-7

    Article  Google Scholar 

  49. Liu N, Xiao H, Li J (2016) Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze(E) and R22 in minichannels. Appl Therm Eng 102:63–72. https://doi.org/10.1016/j.applthermaleng.2016.03.073

    Article  Google Scholar 

  50. Dobson MK, Chato JC (1998) Condensation in smooth horizontal tubes. J Heat Transf 120:193. https://doi.org/10.1115/1.2830043

    Article  Google Scholar 

  51. Wang L, Dang C, Hihara E (2012) Experimental study on condensation heat transfer and pressure drop of low GWP refrigerant HFO1234yf in a horizontal tube. Int J Refrig 35:1418–1429. https://doi.org/10.1016/j.ijrefrig.2012.04.006

    Article  Google Scholar 

  52. Mitchell M (n.d.) Unicla, oil and compressor lubrication, Global Marketing and Technical Support, Unicla International Limited

  53. Shah RK, London AL (1978) Laminar Flow Forced Convection in Ducts. 10.1016/B978-0-12-020051-1.50022-X

  54. Cavallini A, Bortolin S, Del Col D, Rossetto L (2008) Condensation and Vaporization of Halogenated Refrigerants Inside a Circular Minichannel

  55. Cavallini A, Del Col D, Doretti L, Matkovic M, Rossetto L, Zilio C (2005) Two-phase frictional pressure gradient of R236ea, R134a and R410A inside multi-port mini-channels. Exp Thermal Fluid Sci 29:861–870. https://doi.org/10.1016/j.expthermflusci.2005.03.012

    Article  Google Scholar 

  56. Del Col D, Torresin D, Cavallini A (2010) Heat transfer and pressure drop during condensation of the low GWP refrigerant R1234yf. Int J Refrig 33:1307–1318. https://doi.org/10.1016/j.ijrefrig.2010.07.020

    Article  Google Scholar 

  57. Wambsganss MW, France DM, Tran TN, Chyu MC (2000) Two phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development. Int J Multiphase Flow 26:1739–1754

    Article  Google Scholar 

  58. Hwang YW, Kim MS (2006) The pressure drop in microtubes and the correlation development. Int J Heat Mass Transf 49:1804–1812. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.040

    Article  Google Scholar 

Download references

Acknowledgements

The present research work is a supported by MHRD, Govt of India and Sardar Vallabhbhai National Institute of Technology, Surat, India under the Annual plan No.MED/RAC Lab. /Annual Plan/0816/2638/2017-18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejendra Patel.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, T., Parekh, A. & Tailor, P. Experimental analysis of condensation heat transfer and frictional pressure drop in a horizontal circular mini channel. Heat Mass Transfer 56, 1579–1600 (2020). https://doi.org/10.1007/s00231-019-02798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02798-5

Navigation