Skip to main content
Log in

Ultrasonic-Induced Phase Redistribution and Acoustic Hardening for Rotary Ultrasonic Roller Burnished Ti-6Al-4V

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ultrasonic energy can promote the dislocation motion in ultrasonic-assisted machining. The phase redistribution of Ti-6Al-4V alloy will occur in ultrasonic-assisted machining with appropriate ultrasonic powers. The variations of the volume fractions of β-Ti and α-Ti influence the microhardness on the processed surface. In the present paper, various rotary ultrasonic roller burnishing experiments were conducted to investigate the ultrasonic-induced phase redistribution of Ti-6Al-4V at different ultrasonic powers. The volume fractions of β-Ti and α-Ti were measured by X-ray diffraction. SEM images of the processed surfaces were used to analyze the microstructure evolution and grain refinement of Ti-6Al-4V at various ultrasonic powers. Then, the distributions of local misorientation, texture and grain boundary were observed by EBSD. The results indicated that the microhardness approached the maximum value on the processed surface while the volume fraction of β-Ti reached its maximum value. Finally, the modified phenomenological model was applied to elucidate the relationship among the microhardness, the phase volume fractions and the grain refinement. The fitting degree for microhardness between the modified phenomenological model prediction and experimental measurement was 92.2 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Blaha and B. Langenecker: Sci. Nat. Heidelberg., 1955, vol. 42, pp. 556–55.

    CAS  Google Scholar 

  2. B. Langenecker: IEEE Trans. Sonics Ultrasonics., 1966, vol. 13, pp. 1–8.

    Google Scholar 

  3. B. Langenecker and C.W. Fountain: Phil. Mag., 1965, vol. 11, pp. 512-519.

    Google Scholar 

  4. A. Abdulla, M. Sotoodezadeh, R. Abedini and V. Fartashvand: Int. J. Precis. Eng. Manuf., 2013, vol. 14, pp. 191–98.

    Google Scholar 

  5. C. Yang, X. Shan and T. Xie: Int. J. Adv. Manuf. Technol., 2016, vol. 83, pp. 645–55.

    Google Scholar 

  6. Y. Wang, H. Gong, F.Z. Fang and H. Ni: Int. J. Adv. Manuf. Technol., 2016, vol. 83, pp. 461–74.

    Google Scholar 

  7. Z. Yao, G.Y. Kim, L. Faidley, Q. Zou, D. Mei and Z. Chen: Mater. Manuf. Process., 2013, vol. 28, pp. 584–588.

    CAS  Google Scholar 

  8. Y. Liu, L.J. Wang and D.P. Wang: J. Mater. Process. Technol., 2011, vol. 211, pp. 2106–13.

    CAS  Google Scholar 

  9. A.T. Bozdana, N.N.Z. Gindy and H. Li: Int. J. Mach. Tools Manuf., 2005, vol. 45, pp. 713–18.

    Google Scholar 

  10. J. Huuki and S.V. Laakso: P. I. Mech. Eng. B-J. Eng., 2013, vol. 227, pp. 45–53.

    Google Scholar 

  11. J. Huuki, M. Hornborg and J. Juntunen: J. Eng., 2014, vol. 2014, pp. 5–7.

    Google Scholar 

  12. M. Salmi, J. Huuki and I.F. Ituarte: Prog. Addit. Manuf., 2017, vol. 2, pp. 31-41.

    Google Scholar 

  13. Z.H. Yao, G.Y. Kim, Z.H. Wang, L.A. Faidley, Q.Z. Zou, D.Q. Mei and Z.C. Chen: Int. J. of Plasticity., 2012, vol.39, pp. 75-87.

    CAS  Google Scholar 

  14. T. Wen, L. Wei, X. Chen and C.L. Pei: Int. J. Miner. Metall. Mater., 2011, vol. 18, pp. 70–76.

    CAS  Google Scholar 

  15. T. Liu, J. Lin, Y. J. Guan, Z. D. Xie, L. H. Zhu and J.Q. Zhai: Ultrasonics., 2018, vol. 89, pp. 26–33.

    CAS  Google Scholar 

  16. A. Maurotto, R. Muhammad, A. Roy and V.V. Sillberschmidt: Ultrasonics., 2013, vol. 53, pp. 1242–50.

    CAS  Google Scholar 

  17. Y.C. Wang and T.G. Langdon: Mat. Sci. Eng. A., 2013, vol. 559, pp. 861–67.

    CAS  Google Scholar 

  18. J. Fu, H. Ding, Y. Huang, W. Zhang and T.G. Langdon: J. Mater. Res. Technol., 2015, vol. 4, pp. 2–7.

    CAS  Google Scholar 

  19. H.W. Zhou, H.Q. Liu, D.Q. Yi, Y. Xiao, X.L. Zhao, J. Wang and Q. Gao: J. Iron. Steel. Res. Int., 2017, vol. 24, pp. 811–22.

    Google Scholar 

  20. J.W. Elmer, T.A. Palmer, S.S. Babu and E.D. Specht: Mat. Sci. Eng. A., 2005, vol. 391, pp. 104–13.

    Google Scholar 

  21. S.L. Semiation, S.L. Knisley, P.N. Fagin, D.R. Barker and F. Zhang: Metall. Mater. Trans. A., 2003, vol. 34, pp. 2377–386.

    Google Scholar 

  22. P. Nandwana, Y. Lee, C. Ranger, D.R. Anthony, R.D. Ryan and S.B. Sudarsanam: Metall. and Mat. Trans. A, 2019, vol. 50, pp. 3429–39.

    CAS  Google Scholar 

  23. X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong and C.K. Chua: Acta. Mater., 2015, vol. 97, pp. 1–16.

    CAS  Google Scholar 

  24. A.A. Antonysamy, J. Meyer and P.B. Prangnell: Mater. Charact., 2013, vol. 84, pp. 153–68.

    CAS  Google Scholar 

  25. J. Donoghue, A.A. Antonysamy, F. Martina, P.A. Colegrove, S.W. Williams and P.B. Prangnell: Mater. Charact., 2016, vol. 114, pp. 103–14.

    CAS  Google Scholar 

  26. E. Chikarakara, S. Naher and D. Brabazon: Surf. Coat. Tech., 2012, vol. 206, pp. 3223–29.

    CAS  Google Scholar 

  27. F. Martina, P.A. Colegrove, S.W. Williams and J. Meyer: Metall. and Mat. Trans. A, 2015, vol. 46, pp. 6103–18.

    CAS  Google Scholar 

  28. J. Hu, T. Shimizu and M. Yang: Ultrason. Sonochem., 2018, vol. 48, pp. 240–48.

    CAS  Google Scholar 

  29. J. Zhao and Z.Q. Liu: Mater. Des., 2016, vol. 107, pp. 238–49.

    CAS  Google Scholar 

  30. V. Fartashvand, A. Abdullah and S.A.S. Vanini: Ultrason. Sonochem., 2016, vol. 38, pp. 744–49.

    Google Scholar 

  31. J. Luo, M. Li, W. Yu and H. Li: Mat. Sci. Eng. A., 2009, vol. 504, pp. 90–98.

    Google Scholar 

  32. X.G. Fan, H. Yang, Z.C. Sun and D.W. Zhang: Mat. Sci. Eng. A., 2010, vol. 527, pp. 5391–99.

    Google Scholar 

  33. S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev and S.L. Semiatin: Acta. Mater., 2009, vol. 57, pp 2470–81.

    CAS  Google Scholar 

  34. C. Leyens and M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications, First ed., Wiley, Weinheim, 2003, pp. 3–6.

    Google Scholar 

  35. J.J. Lin, Y.H. Lv, Y.X. Liu, B.S. Xu, Z. Sun, Z.G. Li and Y.X. Wu: Mater. Des., 2016, vol. 102, pp. 30–40.

    CAS  Google Scholar 

  36. H. Zhou, H. Cui, Q.H. Qin, H. Wang and Y. Shen: Mat. Sci. Eng. A., 2017, vol. 682, pp. 376–88.

    CAS  Google Scholar 

  37. B. Nagarajan, D. Kumar, Z. Fan and S. Castagne: Mat. Sci. Eng. A., 2018, vol. 728, pp. 196–207.

    CAS  Google Scholar 

  38. S. Roy and S. Suwas: J. Alloy. Compd., 2013, vol. 548, pp. 110–25.

    CAS  Google Scholar 

  39. Y. Liu and M. Li: Mat. Sci. Eng. A., 2016, vol. 669, pp. 7–13.

    CAS  Google Scholar 

  40. G. Rotella, O.W.J. Dillon, D. Umbrello, L. Settineri and I.S. Jawahir: Int. J. Adv. Manuf. Technol., 2014, vol. 71, pp. 47–55.

    Google Scholar 

  41. P.C. Collins, C.V. Haden, I. Ghamarian, B.J. Hayes, T. Ales, G. Penso, V. Dixit and G. Harlow: Jom., 2014, vol. 66, pp 1299–1309.

    CAS  Google Scholar 

  42. F. Khodabakhshi, M. Haghshenas, H. Eskandari and B. Koohbor: Mat. Sci. Eng. A., 2015, vol. 636, pp 331–39.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (51425503 and 91860207). This work was also supported by Grants from Taishan Scholar Foundation and the National Key Research and Development Program of China (2018YFB2002201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanqiang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 12, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Liu, Z., Chen, L. et al. Ultrasonic-Induced Phase Redistribution and Acoustic Hardening for Rotary Ultrasonic Roller Burnished Ti-6Al-4V. Metall Mater Trans A 51, 1320–1333 (2020). https://doi.org/10.1007/s11661-019-05594-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05594-2

Navigation