Skip to main content
Log in

Physical origin of the temperature-dependent open-circuit voltage in solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

After the contribution of hot carriers to the current in solar cells has been considered, a physical and analytical model of open-circuit voltage is proposed. A variety of experiments on the temperature-dependent open-circuit voltage in solar cells that is one critical factor to determine their overall efficiency are successfully modeled based on the consideration of hot carriers. While previous modeling studies focused on numerical techniques, a physical and analytical model of the open-circuit voltage has been developed. Such a study is an important step toward a quantitative model of solar cells, leading to a deeper understanding of the physical effects in these materials. The analysis of the open-circuit voltage reveals how it depends on temperature, the acceptor density, the light-generated current density, the donor density, the bandgap, the effective mass, and the dielectric constant. A material parameter variation is performed to understand its effects on the open-circuit voltage. It will benefit to optimize the device performance by tuning material parameters through the simplicity and analytic nature of the proposed model. It is also helpful to characterize the material properties using the open-circuit voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Adv. Funct. Mater. 11, 374 (2001)

    Google Scholar 

  2. M. Kauk, M. Altosaar, J. Raudoja, A. Jagomägi, M. Danilson, T. Varema, Thin Solid Films 515, 5880 (2007)

    ADS  Google Scholar 

  3. X. Fang, S. Ren, C. Li, C. Li, G. Chen, H. Lai, J. Zhang, L. Wu, Sol. Energ. Mat. Sol. C. 188, 93 (2018)

    Google Scholar 

  4. Z. Jin, A. Wang, Q. Zhou, Y. Wang, J. Wang, Sci. Rep. 6, 37106 (2016)

    ADS  Google Scholar 

  5. F. Gao, W. Tress, J. Wang, O. Inganäs, Phys. Rev. Lett. 114, 128701 (2015)

    ADS  Google Scholar 

  6. A.K. Thakur, G. Wantz, G. Garcia-Belmonte, J. Bisquert, L. Hirsch, Sol. Energ. Mat. Sol. C. 95, 2131 (2011)

    Google Scholar 

  7. D. Rauh, A. Wagenpfahl, C. Deibel, V. Dyakonov, Appl. Phys. Lett. 98, 69 (2011)

    Google Scholar 

  8. A. Castro-Carranza, J.C. Nolasco, N. Reininghaus, S. Geißendorfer, M. Vehse, J. Parisi, J. Gutowski, T. Voss, Appl. Phys. Lett. 109, 043503 (2016)

    ADS  Google Scholar 

  9. S.R. Raga, E.M. Barea, F. Fabregat-Santiago, J. Phys. Chem. Lett. 3, 1629 (2012)

    Google Scholar 

  10. C.M. Ramsdale, J.A. Barker, A.C. Arias, J.D. MacKenzie, R.H. Friend, N.C. Greenham, J. Appl. Phys. 92, 4266 (2002)

    ADS  Google Scholar 

  11. N. Tessler, J. Appl. Phys. 118, 215501 (2015)

    ADS  Google Scholar 

  12. F. Babbe, L. Choubrac, S. Siebentritt, Solar RRL 2, 1800248 (2018)

    Google Scholar 

  13. V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, M.T. Rispens, J. Appl. Phys. 94, 6849 (2003)

    ADS  Google Scholar 

  14. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J.V. Manca, Nat. Mater. 8, 904 (2009)

    ADS  Google Scholar 

  15. B.P. Rand, D.P. Burk, S.R. Forrest, Phys. Rev. B 75, 115327 (2007)

    ADS  Google Scholar 

  16. C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, M.T. Rispens, L. Sanchez, J.C. Hummelen, T. Fromherz, Thin Solid Films 403, 368 (2002)

    ADS  Google Scholar 

  17. W.J. Potscavage Jr., S. Yoo, B. Kippelen, Appl. Phys. Lett. 93, 413 (2008)

    Google Scholar 

  18. D.C. Olson, S.E. Shaheen, M.S. White, W.J. Mitchell, M.F. van Hest, T.R. Collins, D. S. Ginley. Adv. Funct. Mater. 17, 264 (2007)

    Google Scholar 

  19. R.A. Street, D. Davies, P.P. Khlyabich, B. Burkhart, B.C. Thompson, J. Am. Chem. Soc. 135, 986 (2013)

    Google Scholar 

  20. M. Shaban, M.A.G. El-Sayed, Appl. Surf. Sci. 254, 7901 (2008)

    ADS  Google Scholar 

  21. M. Mikolášek, J. Racko, L. Harmatha, Appl. Surf. Sci. 395, 166 (2017)

    ADS  Google Scholar 

  22. M.T. Neukom, A. Schiller, S. Züfle, E. Knapp, J. Ávila, D. Pérez-del-Rey, C. Dreessen, K.P.S. Zanoni, M. Sessolo, H.J. Bolink, B. Ruhstaller, A.C.S. Appl, Mater. Interfaces 11, 23320 (2019)

    Google Scholar 

  23. F. Wu, C. Chen, Y. Zhao, H. Zhang, X. Li, W. Lu, T. Zhang, J. Electrochem. Soc. 161, H593 (2014)

    Google Scholar 

  24. B. Kitchen, O. Awartani, R.J. Kline, T. McAfee, H. Ade, B.T. O’Connor, A.C.S. Appl, Mater. Interfaces 7, 13208 (2015)

    Google Scholar 

  25. P.P. Khlyabich, A.E. Rudenko, R.A. Street, B.C. Thompson, A.C.S. Appl, Mater. Interfaces 6, 9913 (2014)

    Google Scholar 

  26. F. Wu, Q. Cui, Z. Qiu, C. Liu, H. Zhang, W. Shen, M. Wang, A.C.S. Appl, Mater. Interfaces 5, 3246 (2013)

    Google Scholar 

  27. S.L. Chang, K.E. Hung, F.Y. Cao, K.H. Huang, C.S. Hsu, C.Y. Liao, C.H. Lee, Y.J. Cheng, A.C.S. Appl, Mater. Interfaces 11, 33179 (2019)

    Google Scholar 

  28. N. Felekidis, A. Melianas, M. Kemerink, A.C.S. Appl, Mater. Interfaces 9, 37070 (2017)

    Google Scholar 

  29. D.K. De, O.C. Olawole, Proc. SPIE 9927, 99270E (2016)

    ADS  Google Scholar 

  30. L.F. Mao, H. Ning, J.Y. Wang, PLoS ONE 10, e0128438 (2015)

    Google Scholar 

  31. L.F. Mao, H. Ning, Z.L. Huo, J.Y. Wang, Sci. Rep. 5, 18307 (2015)

    ADS  Google Scholar 

  32. L.F. Mao, H. Ning, Z. Lu, G. Wang, Sci. Rep. 6, 24777 (2016)

    ADS  Google Scholar 

  33. L.F. Mao, ETRI J. 39, 284 (2017)

    Google Scholar 

  34. L.F. Mao, J. Wang, L. Li, H. Ning, C. Hu, Carbon 119, 446 (2017)

    Google Scholar 

  35. L.F. Mao, Appl. Phys. A 125, 325 (2019)

    ADS  Google Scholar 

  36. L.F. Mao, Appl. Phys. Lett. 90, 183511 (2007)

    ADS  Google Scholar 

  37. L.F. Mao, Appl. Phys. Lett. 91, 123519 (2007)

    ADS  Google Scholar 

  38. L.F. Mao, I.E.E.E. Electron, Dev. Lett. 28, 161 (2007)

    Google Scholar 

  39. L.F. Mao, I.E.E.E. Trans, Electron. Dev. 55, 782 (2008)

    ADS  Google Scholar 

  40. L.F. Mao, Solid State Electron. 52, 186 (2008)

    ADS  Google Scholar 

  41. L.F. Mao, ETRI J. 32, 68 (2010)

    Google Scholar 

  42. L.F. Mao, Pramana. J. Phys. 72, 407 (2009)

    Google Scholar 

  43. L.F. Mao, Pramana. J. Phys. 93, 11 (2019)

    Google Scholar 

  44. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wliey, New York, 2007)

    Google Scholar 

  45. V.K. Khanna, Extreme-Temperature and Harsh-Environment Electronics (IOP Publishing Limited, Bristol, 2017)

    Google Scholar 

  46. D. Cheyns, J. Poortmans, P. Heremans, C. Deibel, S. Verlaak, B.P. Rand, J. Genoe, Phys. Rev. B 77, 165332 (2008)

    ADS  Google Scholar 

  47. L.F. Mao, Silicon (2019). https://doi.org/10.1007/s12633-019-00249-8

    Article  Google Scholar 

  48. J. Lutz, H. Schlangenotto, U. Scheuermann, R. De Doncker, Semiconductor Power Devices (Springer, Berlin, 2011)

    Google Scholar 

Download references

Acknowledgements

The author acknowledges financial support from the National Natural Science Foundation of China under Grant No. 61774014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Feng Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, LF. Physical origin of the temperature-dependent open-circuit voltage in solar cells. Appl. Phys. A 126, 42 (2020). https://doi.org/10.1007/s00339-019-3224-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3224-2

Navigation