Skip to main content
Log in

Utilization of carbon nanotubes in removal of heavy metals from wastewater: a review of the CNTs’ potential and current challenges

  • Review
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbon nanotubes-based adsorbents have attracted substantial interest as potential adsorbents for heavy metals removal. However many aspects such as the interaction between the modified carbon nanotubes (CNTs) and the heavy metal ions, quantitative effect of the functional groups and regeneration of CNTs-based adsorbents are not fully understood yet. A critical review was performed to compile an extensive profile from several studies of using pristine and modified CNTs for heavy metals removal. CNTs demonstrated a great potential. However surface modification of CNTs is necessary as pristine CNTs may be ineffective in arsenite [As (III)] or arsenate [As (V)] removal. Isotherms and kinetic models for the removal of heavy metals are discussed in details. A particular focus has been placed on better understanding the mechanism of heavy metals removal using CNTs-based adsorbents, affecting factors, maximum adsorption capacity and regeneration. The effect of adsorbent dose, pH, initial concentration, and contact time were addressed by several researchers, which specifies the consistency and performance of CNTs-based materials as potential adsorbents. To elucidate the mechanism of adsorption, FT-IR, XPS, SEM, TEM and EDX results have been reviewed and discussed. It is found that Langmuir, Freundlich and second order kinetic models are the most frequently used isotherm to describe heavy metals adsorption. CNTs-based adsorbent can be efficiently regenerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.T. Abdel-Ghani, G.A. El-Chaghaby, F.S. Helal, Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J. Adv. Res. 6(3), 405–415 (2015)

    Google Scholar 

  2. M. Ajmal, R.K. Rao, R. Ahmad, J. Ahmad, Adsorption studies on citrus reticulate: removal and recovery of Ni(II) from electroplating wastewater. J. Hazard. Mater. 79(1–2), 117–131 (2000)

    Google Scholar 

  3. M.A. Akl, A.M. Abou-Elanwar, Adsorption studies of Cd (II) from water by acid modified multi-walled carbon nanotubes. J. Nano-med. Nanotechnol. 6(6), 327–336 (2015)

    Google Scholar 

  4. I. Ali, V.K. Gupta, Advances in water treatment by adsorption technology. Nat. Protoc. 1(6), 2661–2667 (2007)

    Google Scholar 

  5. M. Alimohammady, M. Jahangiri, F. Kiani, H. Tahermansouri, Design and evaluation of functionalized multi-walled carbon nanotubes by 3-aminopyrazole for the removal of Hg(II) and As (III) ions from aqueous solution. Res. Chem. Intermed. 44(1), 69–92 (2018)

    Google Scholar 

  6. N. Asasian, T. Kaghazchi, Sulfurized activated carbons and their mercury adsorption/desorption behavior in aqueous phase. Int. J. Environ. Sci. Technol. 12(8), 2511–2522 (2015)

    Google Scholar 

  7. M. Aslam, S. Rais, M. Alam, A. Pugazhendi, Adsorption of Hg(II) from aqueous solution using Adulsa (Justicia adhatoda) leaves powder: kinetic and equilibrium studies. J. Chem. 2013, 174807 (2013). https://doi.org/10.1155/2013/174807

    Article  Google Scholar 

  8. M.A. Atieh, O.Y. Bakather, B. Al-Tawbini, A.A. Bukhari, F.A. Abuilaiwi, M.B. Fettouhi, Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water. Bioinorg. Chem. Appl. 2010, 603978 (2010). https://doi.org/10.1155/2010/603978

    Article  Google Scholar 

  9. ATSDR, Priority list of hazardous substances (2015)

  10. A.A. Attia, S.A. Khedr, S.A. Elkholy, Adsorption of chromium ion (VI) by acid activated carbon. Braz. J. Chem. Eng. 27(1), 183–193 (2010)

    Google Scholar 

  11. A. Ayar, A.A. Gürten, Determination of the rate control step of purin and pyrimidine bases adsorption on cobalt (II)–CDAE-sporopollenin. Colloids Surf A Physicochem Eng Asp 229(1–3), 149–155 (2003)

    Google Scholar 

  12. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 3039817 (2017). https://doi.org/10.1155/2017/3039817

    Article  Google Scholar 

  13. M.R. Babaa, N. Dupont-Pavlovsky, E. McRae, K. Masenelli-Varlot, Physical adsorption of carbon tetrachloride on as-produced and on mechanically opened single walled carbon nanotubes. Carbon 42(8–9), 1549–1554 (2004)

    Google Scholar 

  14. W. Bai, A. Raghavendra, R. Podila, J. Brown, Defect density in multiwalled carbon nanotubes influences ovalbumin adsorption and promotes macrophage activation and CD4(+) T-cell proliferation. Int. J. Nanomed. 2(11), 4357–4371 (2016)

    Google Scholar 

  15. N.M. Bandaru, N. Reta, H. Dalal, A.V. Ellis, J. Shapter, N.H. Voelcker, Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. J. Hazard. Mater. 261, 534–541 (2013)

    Google Scholar 

  16. A.A. Basheer, New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018)

    Google Scholar 

  17. M. Bassyouni, M.H. Abdel-Aziz, M.S. Zoromba, S.M.S. Abdel-Hamid, E. Drioli, A review of polymeric nanocomposite membranes for water purification. J. Ind. Eng. Chem. 73, 19–46 (2019)

    Google Scholar 

  18. Ş.S. Bayazit, İ. İnci, Adsorption of Cu (II) ions from water by carbon nanotubes oxidized with UV-light and ultrasonication. J. Mol. Liq. 199, 559–564 (2014)

    Google Scholar 

  19. Ş.S. Bayazit, Ö. Kerkez, Hexavalent chromium adsorption on superparamagnetic multi-wall carbon nanotubes and activated carbon composites. Chem. Eng. Res. Des. 92(11), 2725–2733 (2014)

    Google Scholar 

  20. M. Bhaumik, A. Maity, V.V. Srinivasui, M.S. Onyago, Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nano composite. J. Hazard. Mater. 190(1–3), 381–390 (2011)

    Google Scholar 

  21. A. Bianco, K. Kostarelos, C.D. Partidos, M. Prato, Biomedical applications of functionalized carbon nanotubes. Chem. Commun. 5, 571–577 (2005)

    Google Scholar 

  22. W. Bleam, Surface chemistry and adsorption, in Soil and environmental chemistry, 2nd edn., ed. by W. Bleam (Academic Press, Cambridge, 2017), pp. 385–443

    Google Scholar 

  23. E. Bulut, M. Özacar, İ.A. Şengil, Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design. Microporous Mesoporous Mater. 115(3), 234–246 (2008)

    Google Scholar 

  24. A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, V.K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol. Environ. Saf. 148, 702–712 (2018)

    Google Scholar 

  25. M.M. Calbi, M.W. Cole, S.M. Gatica, G. Stan, M.J. Bojan, Condensed phases of gases inside nanotube bundles. Rev. Mod. Phys. 73(4), 857–865 (2001)

    ADS  Google Scholar 

  26. Q. Chang, W. Lin, W.C. Ying, Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water. J. Hazard. Mater. 184(1–3), 515–522 (2010)

    ADS  Google Scholar 

  27. H.P. Chao, C.C. Chang, Adsorption of copper (II), cadmium (II), nickel (II) and lead (II) from aqueous solution using bio sorbents. Adsorption 18(5–6), 395–401 (2012)

    Google Scholar 

  28. B. Chen, Z. Zhu, J. Ma, Y. Qiu, J. Chen, Surfactant assisted Ce–Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. J. Mater. Chem. 1(37), 11355–11367 (2013)

    Google Scholar 

  29. C. Chen, X. Wang, Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind. Eng. Chem. Res. 45(26), 9144–9149 (2006)

    Google Scholar 

  30. C. Chen, J. Hu, D. Shao, J. Li, X. Wang, Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni (II) and Sr (II). J. Hazard. Mater. 164(2–3), 923–928 (2009)

    Google Scholar 

  31. H. Chen, J. Li, D. Shao, X. Ren, X. Wang, Poly (acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co (II) removal from aqueous solution. Chem. Eng. J. 210, 475–481 (2012)

    Google Scholar 

  32. P.H. Chen, C.F. Hsu, D.D. Tsai, Y.M. Lu, W.J. Huang, Adsorption of mercury from water by modified multi-walled carbon nanotubes: adsorption behaviour and interference resistance by coexisting anions. Environ. Technol. 35(15), 1935–1944 (2014)

    Google Scholar 

  33. R. Chen, L. Chai, Q. Li, Y. Shi, Y. Wang, A. Mohammad, Preparation and characterization of magnetic Fe3O4/CNT nano particles by RPO method to enhance the efficient removal of Cr(VI). Environ. Sci. Pollut. Res. 20(10), 7175–7185 (2013)

    Google Scholar 

  34. W. Chen, R. Parette, J. Zou, F.S. Cannon, B.A. Dempsey, Arsenic removal by iron-modified activated carbon. Water Res. 41(9), 1851–1858 (2007)

    Google Scholar 

  35. W.H. Cheung, Y.S. Szeto, G. McKay, Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour. Technol. 98(15), 2897–2904 (2007)

    Google Scholar 

  36. S.R. Chowdhury, E.K. Yanful, Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles. Water Environ J 25(3), 429–437 (2011)

    Google Scholar 

  37. H. Cid, C. Ortiz, J. Pizarro, D. Barros, X. Castillo, L. Giraldo, J.C. Moreno-Piraján, Characterization of copper (II) biosorption by brown algae Durvillaea antarctica dead biomass. Adsorption 21(8), 645–658 (2015)

    Google Scholar 

  38. J.F. Colomer, P. Piedigrosso, A. Fonseca, J.B. Nagy, Different purification methods of carbon nanotubes produced by catalytic synthesis. Synth. Met. 103(1–3), 2482–2483 (1999)

    Google Scholar 

  39. G. Crini, Non-conventional low-cost adsorbents for dye removal. Bioresour. Technol. 97(9), 1061–1085 (2006)

    Google Scholar 

  40. A. Dabrowski, Adsorptions from theory to practice. Adv. Colloid Interface Sci. 93(1–3), 135–224 (2001)

    Google Scholar 

  41. A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 3(1), 38–45 (2012)

    Google Scholar 

  42. A.B. Dalton, S. Collins, J. Razal, E. Munoz, V.H. Ebron, B.G. Kim, R.H. Baughman, Continuous carbon nanotube composite fibers: properties, potential applications, and problems. J. Mater. Chem. 14(1), 1–3 (2004)

    Google Scholar 

  43. R. Das, S.B.A. Hamid, M.E. Ali, A.F. Ismail, M.S.M. Annuar, S. Ramakrishna, Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354, 160–179 (2014)

    Google Scholar 

  44. R. Das, B.F. Leo, F. Murphy, The toxic truth about carbon nanotubes in water purification: a perspective view. Nanoscale Res. Lett. 13(1), 183 (2018)

    ADS  Google Scholar 

  45. A. Dawlet, D. Talip, H.Y. Mi, Removal of mercury from aqueous solution using sheep bone charcoal. Procedia Environ. Sci. 18, 800–808 (2013)

    Google Scholar 

  46. M. Dehaghi, Removal of lead ions from aqueous solution using multi-walled carbon nanotubes: the effect of functionalization. J. Appl. Environ. Biol. Sci. 4(2), 316–326 (2014)

    Google Scholar 

  47. E. Demirbaş, Adsorption of cobalt (II) ions from aqueous solution onto activated carbon prepared from hazelnut shells. Adsorpt. Sci. Technol. 21(10), 951–963 (2003)

    Google Scholar 

  48. A. Denizli, E. Büyüktuncel, A. Tuncel, S. Bektas, Ö. Genç, Batch removal of lead ions from aquatic solutions by polyethyleneglycol-methacrylate gel beads carrying cibacron blue F3GA. Environ. Technol. 21(6), 609–614 (2000)

    Google Scholar 

  49. Z. Di, Y. Li, Z. Luan, J. Liang, Adsorption of chromium(VI) ions from water by carbon nanotubes. Adsorpt. Sci. Technol. 22(6), 467–474 (2004)

    Google Scholar 

  50. T.N. Diva, K. Zare, F. Taleshi, M. Yousefi, Synthesis, characterization, and application of nickel oxide/CNT nanocomposites to remove Pb2+ from aqueous solution. J. Nanostruct. Chem. 7(3), 273–281 (2017)

    Google Scholar 

  51. H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, A. Bianco, Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 6(7), 1522–1528 (2006)

    ADS  Google Scholar 

  52. Y. Elhenawy, N.A. Elminshawy, M. Bassyouni, A.A. Alanezi, E. Drioli, Experimental and theoretical investigation of a new air gap membrane distillation module with a corrugated feed channel. J Membr Sci 594, 117461 (2020)

    Google Scholar 

  53. A. Elrasheedy, N. Nady, M. Bassyouni, A. El-Shazly, Metal organic framework based polymer mixed matrix membranes: review on applications in water purification. Membranes 9(7), 88 (2019)

    Google Scholar 

  54. M. El-Sadaawy, O. Abdelwahab, Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica) coat. Alex. Eng. J. 53(2), 399–408 (2014)

    Google Scholar 

  55. K.E. Engates, H.J. Shipley, Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ. Sci. Pollut. Res. 18(3), 386–395 (2011)

    Google Scholar 

  56. Environmental Protection Agency (EPA), U.S. (2009). National Primary Drinking Water Regulations (EPA 816-F-09-004)

  57. EPA, monitored natural attenuation of inorganic contaminants in ground water assessment for non-radionuclides including Arsenic, Cadmium, Chromuim, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium, Volume II (2007)

  58. A. Erto, F. Di Natale, D. Musmarra, A. Lancia, Modeling of single and competitive adsorption of cadmium and zinc onto activated carbon. Adsorption 21(8), 611–621 (2015)

    Google Scholar 

  59. A.A. Farghali, M. Bahgat, A.E. Allah, M.H. Khedr, Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures. Beni-Suef Univ. J. Basic Appl. Sci. 2(2), 61–71 (2013)

    Google Scholar 

  60. A.A. Farghali, H.A. Tawab, S.A. Moaty, R. Khaled, Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. J. Nanostruct. Chem. 7(2), 101–111 (2017)

    Google Scholar 

  61. C. Faur-Brasquet, K. Kadirvelu, P. Le Cloirec, Removal of metal ions from aqueous solution by adsorption onto activated carbon cloths: adsorption competition with organic matter. Carbon 40(13), 2387–2392 (2002)

    Google Scholar 

  62. S.S. Fiyadh, M.A. AlSaadi, W.Z.B. Jaafar, M.K. AlOmar, S.S. Fayaed, N.S.B. Mohd, A. El-Shafie, Review on heavy metal adsorption processes by carbon nanotubes. J. Clean. Prod. 230, 783–793 (2019)

    Google Scholar 

  63. K.Y. Foo, B.H. Hameed, Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste. Adv. Colloid Interface Sci. 159(2), 130–314 (2009)

    Google Scholar 

  64. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Mang. 92(3), 407–418 (2011)

    Google Scholar 

  65. Z. Gao, T.J. Bandosz, Z. Zhao, M. Han, J. Qiu, Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167(1–3), 357–365 (2009)

    Google Scholar 

  66. Y. Ge, Z. Li, D. Xiao, P. Xiong, N. Ye, Sulfonated multi-walled carbon nanotubes for the removal of copper (II) from aqueous solutions. J. Ind. Eng. Chem. 20(4), 1765–1771 (2014)

    Google Scholar 

  67. F. Gimbert, N. Morin-Crini, F. Renault, P.M. Badot, G. Crini, Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J. Hazard. Mater. 157(1), 34–46 (2008)

    Google Scholar 

  68. J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead (II) by adsorption using treated granular activated carbon: batch and column studies. J. Hazard. Mater. 125(1–3), 211–220 (2005)

    Google Scholar 

  69. P.R. Grossl, M. Eick, D.L. Sparks, S. Goldberg, C.C. Ainsworth, Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ. Sci. Technol. 31(2), 321–326 (1997)

    ADS  Google Scholar 

  70. A. Gupta, S.R. Vidyarthi, N. Sankararamakrishnan, Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. J. Hazard. Mater. 274, 132–144 (2014)

    Google Scholar 

  71. K. Gupta, S. Saha, U.C. Ghosh, Synthesis and characterization of nanostructure hydrous iron-titanium binary mixed oxide for arsenic sorption. J. Nanopart. Res. 10(8), 1361–1368 (2008)

    ADS  Google Scholar 

  72. V.K. Gupta, S. Agarwal, T.A. Saleh, Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater. 185(1), 17–23 (2011)

    Google Scholar 

  73. V.K. Gupta, T.A. Saleh, Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ. Sci. Pollut. Res. 20(5), 2828–2843 (2013)

    Google Scholar 

  74. M. Hadadian, E.K. Goharshadi, M.M. Fard, H. Ahmadzadeh, Synergistic effect of graphene nanosheets and zinc oxide nanoparticles for effective adsorption of Ni (II) ions from aqueous solutions. Appl. Phys. A 124(3), 239 (2018)

    ADS  Google Scholar 

  75. S. Halnor, M. Farooqui, M. Ubale, Removal of copper (II) from aqueous solution and waste water by Prosopis Juliflora leaf powder by adsorption. IJAIEM 2(3), 125–131 (2013)

    Google Scholar 

  76. Y. Hao, F. Yu, R. Lv, C. Ma, Z. Zhang, Y. Rui, B. Xing, Carbon nanotubes filled with different ferromagnetic alloys affect the growth and development of rice seedlings by changing the C:N ratio and plant hormones concentrations. PLoS One 11(6), e0157264 (2016)

    Google Scholar 

  77. P. Hao, X. Ma, J. Xie, F. Lei, L. Li, W. Zhu, B. Tang, Removal of toxic metal ions using chitosan coated carbon nanotube composites for supercapacitors. Sci. China Chem. 61, 797–805 (2018)

    Google Scholar 

  78. H. Hasar, Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. 97(1–3), 49–57 (2003)

    Google Scholar 

  79. S. Hashemian, H. Saffari, S. Ragabion, Adsorption of cobalt (II) from aqueous solutions by Fe3O4/bentonite nanocomposite. Water Air Soil Pollut. 226(1), 2212 (2015)

    ADS  Google Scholar 

  80. K. Hernadi, A. Fonseca, J.B. Nagy, D. Bemaerts, A. Fudala, A.A. Lucas, Catalytic synthesis of carbon nanotubes using zeolite support. Zeolites 17(5), 416–423 (1996)

    Google Scholar 

  81. Y.S. Ho, G. McKay, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng. 76(4), 822–827 (1998)

    Google Scholar 

  82. Y.S. Ho, C.T. Huang, H.W. Huang, Equilibrium sorption isotherm for metal ions on tree fern. Process Biochem. 37(12), 1421–1430 (2002)

    Google Scholar 

  83. H. Hossini, A. Rezaee, S.O. Rastegar, S. Hashemi, M. Safari, Equilibrium and kinetic studies of chromium adsorption from wastewater by functionalized multi-wall carbon nanotubes. React. Kinet. Mech. Catal. 112(2), 371–382 (2014)

    Google Scholar 

  84. J. Hu, S.W. Wang, D.D. Shao, Y.H. Dong, J.X. Li, X.K. Wang, Adsorption and reduction of chromium (VI) from aqueous solution by multi-walled carbon nanotubes. Open Environ. Pollut. Toxicol. J. 1, 66–73 (2009)

    Google Scholar 

  85. Z. Huang, X. Wang, D. Yang, Adsorption of Cr(VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Sci. Eng. 8(3), 226–232 (2015)

    Google Scholar 

  86. H. Igarashi, H. Murakami, Y. Murakami, S. Maruyama, N. Nakashima, Purification and characterization of zeolite-supported single-walled carbon nanotubes catalytically synthesized from ethanol. Chem. Phys. Lett. 392(4–6), 529–532 (2004)

    ADS  Google Scholar 

  87. J.C. Igwe, A.A. Abia, C.A. Ibeh, Adsorption kinetics and intraparticulate diffusivities of Hg, As and Pb ions on unmodified and thiolated coconut fiber. Int. J. Environ. Sci. Technol. 5(1), 83–92 (2008)

    Google Scholar 

  88. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    ADS  Google Scholar 

  89. N.B. Issa, V.N. Rajaković-Ognjanović, B.M. Jovanović, L.V. Rajaković, Determination of inorganic arsenic species in natural waters—benefits of separation and preconcentration on ion exchange and hybrid resins. Anal. Chim. Acta 673(2), 185–193 (2010)

    Google Scholar 

  90. M.E. Itkis, D.E. Perea, R. Jung, S. Niyogi, R.C. Haddon, Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. Chem. Soc. 127(10), 3439–3448 (2005)

    Google Scholar 

  91. K.A. Jensen, J. Bøgelund, P. Jackson, N.R. Jacobsen, R. Birkedal, P.A. Clausen, U.B. Vogel (2015).Carbon nanotubes—types, products, market, and provisional assessment of the associated risks to man and the environment. Environmental project No. 1805

  92. G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, X. Guo, Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39(5), 1378–1383 (2005)

    ADS  Google Scholar 

  93. P.K. Jjemba, Interaction of metals and metalloids with microorganisms in the environment, in Environmental microbiology—principles and applications, ed. by K.J. Patrick (Science Publications, Enfield, 2004), pp. 257–270

    Google Scholar 

  94. L. Joncourt, M. Mermuox, P. Touzain, L. Bonnetain, D. Dumas, B. Allard, Sodium reactivity with carbons. J. Phys. Chem. Solids 57(6–8), 877–882 (1996)

    ADS  Google Scholar 

  95. L. Jossens, J.M. Prausnitz, W. Fritz, E.U. Schlünder, A.L. Myers, Thermodynamics of multi-solute adsorption from dilute aqueous solutions. Chem. Eng. Sci. 33(8), 1097–1106 (1978)

    Google Scholar 

  96. N.A. Kabbashi, M.A. Atieh, A. Al-Mamun, M.E. Mirghami, M.D.Z. Alam, N. Yahya, Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. J. Environ. Sci. 21(4), 539–544 (2009)

    Google Scholar 

  97. N.A. Kabbashi, M.I.A. Karim, M.E. Saeed, K.H.K. Yaacob, Application of carbon nanotubes for removal of copper ion from synthetic water. In; 4th Kuala Lumpur international conference on biomedical engineering 2008 (pp. 77–81). Springer, Berlin, Heidelberg (2008)

  98. K. Kadirvelu, P. Kanmani, P. Senthilkumar, V. Subburam, Separation of mercury (II)from aqueous solution by adsorption onto an activated carbon prepared from Eichhornia crassipes. Adsorpt. Sci. Technol. 22(3), 207–222 (2004)

    Google Scholar 

  99. K. Kadirvelu, P. Senthilkumar, K. Thamaraiselvi, V. Subburam, Activated carbon prepared from biomass as adsorbent: elimination of Ni- (II) from aqueous solution. Bioresour. Technol. 81(1), 87–90 (2002)

    Google Scholar 

  100. V.E. Kagan, N.V. Konduru, W. Feng, B.L. Allen, J. Conroy, Y. Volkov, Y.Y. Tyurina, Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat. Nanotechnol. 5(5), 354 (2010)

    ADS  Google Scholar 

  101. M.I. Kandah, J.L. Meunier, Removal of nickel ions from water by multi-walled carbon nanotubes. J. Hazard. Mater. 146(1–2), 283–288 (2007)

    Google Scholar 

  102. A. Kaushala, S.K. Singhb, Adsorption of Zn (II) from aqueous solution on mango leaves powder. Int. J. 4(1), 301–304 (2016)

    Google Scholar 

  103. M. Khodakovskaya, E. Dervishi, M. Mahmood, Y. Xu, Z. Li, F. Watanabe, A.S. Biris, Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10), 3221–3227 (2009)

    Google Scholar 

  104. D.C.K. Ko, J.F. Porter, G. McKay, Effect of concentration-dependent surface diffusivity on simulation of fixed bed sorption systems. Chem. Eng. Res. Des. 81(10), 1323–1332 (2003)

    Google Scholar 

  105. W. Konicki, I. Pełech, E. Mijowska, Removal of Ni2+ from aqueous solutions by adsorption onto magnetic multiwalled carbon nanotube nanocomposite. Pol. J. Chem. Technol. 16(2), 87–94 (2014)

    Google Scholar 

  106. S.A. Kosa, G. Al Zhrani, M. Abdel salam, Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem. Eng. J. 181–182, 159–168 (2012)

    Google Scholar 

  107. A. Kraus, K. Jainae, F. Unob, N. Sukpirom, Synthesis of MPTS- modified cobalt ferrite nanoparticles and their adsorption properties in relation to Au(III). J. Colloid Interface Sci. 338(2), 359–365 (2009)

    ADS  Google Scholar 

  108. Ş. Kubilay, R. Gürkan, A. Savran, T. Şahan, Removal of Cu (II), Zn (II) and Co (II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption 13(1), 41–51 (2007)

    Google Scholar 

  109. I. Kula, M. Uğurlu, H. Karaoğlu, A. Celik, Adsorption of Cd (II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresour. Technol. 99(3), 492–501 (2008)

    Google Scholar 

  110. P.S. Kumar, Adsorption of Zn(II) ions from aqueous environment by surface modified strychnos Potatorum seeds, a low cost adsorbent. Pol. J. of Chem. Tech. 15(3), 35–41 (2013)

    Google Scholar 

  111. M.H. Lahiani, E. Dervishi, J. Chen, Z. Nima, A. Gaume, A.S. Biris, M.V. Khodakovskaya, Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl. Mater. Interfaces. 5(16), 7965–7973 (2013)

    Google Scholar 

  112. D. Lakherwal, V.K. Rattan, H.P. Singh, Studies on adsorption of nickel by activated carbon in a liquid fluidised bed reactor. Can. Chem. Trans. 4(1), 121–132 (2016)

    Google Scholar 

  113. C.W. Lam, J.T. James, R. McCluskey, R.L. Hunter, Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77(1), 126–134 (2004)

    Google Scholar 

  114. R. Leyva-Ramos, J.L. Bernal, B.J. Mendoza, R.L. Fuentes, C.R. Guerrero, Adsorption of zinc(II) from an aqueous solution onto activated carbon. J. Hazard. Mater. 90(1), 27–38 (2002)

    Google Scholar 

  115. R. Leyva-Ramos, M.S. Berber-Mendoza, J. Salazar-Rabago, R.M. Guerrero-Coronado, J. Mendoza-Barron, Adsorption of lead (II) from aqueous solution onto several types of activated carbon fibers. Adsorption 17(3), 515–526 (2011)

    Google Scholar 

  116. J. Li, C. Chen, S. Zhang, X. Wang, Surface functional groups and defects on carbo nanotubes affect adsorption-desorption hysteresis of metal cations and oxoanions in water. Environ. Sci. Nano 1(5), 488–495 (2014)

    Google Scholar 

  117. Y. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, B. Wei, Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357(3–4), 263–266 (2002)

    ADS  Google Scholar 

  118. Y. Li, J. Ding, Z. Luan, Z. Di, Y. Zhu, C. Xu, B. Wei, Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14), 2787–2792.40 (2003)

    Google Scholar 

  119. Y. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41(5), 1057–1062 (2003)

    Google Scholar 

  120. X.P. Liao, W. Tang, R.Q. Zhou, B. Shi, Adsorption of metal anions of vanadium (V) and chromium (VI) on Zr (IV)-impregnated collagen fiber. Adsorption 14(1), 55–64 (2008)

    Google Scholar 

  121. H.K. Lim, T.T. Teng, M.H. Ibrahim, A. Ahmad, H.T. Chee, Adsorption and removal of zinc (II) from aqueous solution using powdered fish bones. APCBEE Procedia 1, 96–102 (2012)

    Google Scholar 

  122. C. Liné, C. Larue, E. Flahaut, Carbon nanotubes: impacts and behaviour in the terrestrial ecosystem-A review. Carbon 123, 767–785 (2017)

    Google Scholar 

  123. H. Liu, S. Feng, N. Zhang, X. Du, Y. Liu, Removal of Cu (II) ions from aqueous solution by activated carbon impregnated with humic acid. Front. Environ. Sci. Eng. 8(3), 329–336 (2014)

    Google Scholar 

  124. Q. Liu, B. Yang, L. Zhang, R. Huang, Simultaneous adsorption of phenol and Cu2+ from aqueous solution by activated carbon/chitosan composite. Korean J. Chem. Eng. 31(9), 1608–1615 (2014)

    Google Scholar 

  125. S. Liu, L. Mei, X. Liang, L. Liao, G. Lv, S. Ma, K. Xi, Anchoring Fe3O4 nanoparticles on carbon nanotubes for microwave-induced catalytic degradation of antibiotics. ACS Appl. Mater. Interfaces. 10(35), 29467–29475 (2018)

    Google Scholar 

  126. Z. Liu, L. Chen, Z. Zhang, Y. Li, Y. Dong, Y. Sun, Synthesis of multi-walled carbon nanotube hydroxyapatite composites and its application in the sorption of Co (II) from aqueous solutions. J. Mol. Liq. 179, 46–53 (2013)

    Google Scholar 

  127. R.Q. Long, R.T. Yang, Carbon nanotubes as superior sorbent for nitrogen oxides. Ind. Eng. Chem. Res. 40(20), 4288–4291 (2001)

    Google Scholar 

  128. C. Lu, H. Chiu, Adsorption of zinc (II) from water with purified carbon nanotubes. Chem. Eng. Sci. 61(4), 1138–1145 (2005)

    Google Scholar 

  129. C. Lu, H. Chiu, C. Liu, Removal of zinc (II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind. Eng. Chem. Res. 45(8), 2850–2855 (2006)

    Google Scholar 

  130. C. Lu, C. Liu, G.P. Rao, Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon. J. Hazard. Mat. 151(1), 239–246 (2008)

    Google Scholar 

  131. C. Lu, H. Chiu, Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+ from aqueous solution. Chem. Eng. J. 139(3), 462–468 (2008)

    Google Scholar 

  132. T.D. Luckey, B. Venugopal, Metal toxicity in mammals. 2, Chemical toxicity of metals and metalloids. Plenum (1978)

  133. X. Lv, J. Xu, G. Jiang, X. Xu, Removal of chromium (VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 85(7), 1204–1209 (2011)

    ADS  Google Scholar 

  134. I. Lynch, K.A. Dawson, Protein-nanoparticle interactions. Nano today 3(1–2), 40–47 (2008)

    Google Scholar 

  135. F.M. Machado, C.P. Bergmann, T.H. Fernandes, E.C. Lima, B. Royer, T. Calvete, S.B. Fagan, Adsorption of reactive red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J. Hazard. Mater. 192(3), 1122–1131 (2011)

    Google Scholar 

  136. F.M. Machado, S.B. Fagan, I.Z. da Silva, M.J. de Andrade, Carbon Nano adsorbents, in Carbon nanomaterials as adsorbents for environmental and biological applications, ed. by C. Bergmann, F. Machado (Carbon Nanostruct. Springer, Cham, 2015), pp. 11–32

    Google Scholar 

  137. S. Mageswari, S. Kalaiselvan, P.S. Shabudeen, N. Sivakumar, S. Karthikeyan, Optimization of growth temperature of multi-walled carbon nanotubes fabricated by chemical vapour deposition and their application for arsenic removal. Mater Sci-Poland 32(4), 709–718 (2014)

    ADS  Google Scholar 

  138. R. Mahalakshmi, L. Ravikumar, K. Rathina, a study on the removal of mercury (ii) ions from aqueous solution by chemically modified cellulose green adsorbent: kinetic and equilibrium studies. Rasayan J. Chem. 10(1), 286–297 (2017)

    Google Scholar 

  139. P. Mahalingam, B. Parasuram, T. Maiyalagan, S. Sundaram, Chemical methods for purification of carbon nanotubes-A review. J. Environ. Nanotechnol. 1(1), 53–61 (2012)

    Google Scholar 

  140. A. Maiti, J.K. Basu, S. De, Experimental and kinetic modeling of As (V) and As(III) adsorption on treated laterite using synthetic and contaminated groundwater: effect of phosphate, silicate and carbonate ions. Chem. Eng. J. 191, 1–12 (2010)

    Google Scholar 

  141. S.K. Maji, Y.H. Kao, C.W. Liu, Arsenic removal from real arsenic-bearing groundwater by adsorption on iron-oxide-coated natural rock (IOCNR). Desalination 280(1–3), 72–79 (2011)

    Google Scholar 

  142. B.A. Manning, S. Fendorf, S. Goldberg, Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence for inner-sphere complexes. Environ. Sci. Technol. 32(16), 2383–2388 (1998)

    ADS  Google Scholar 

  143. C.A. Martinson, K.J. Reddy, Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J. Colloid Interface Sci. 336(2), 406–411 (2009)

    ADS  Google Scholar 

  144. J. Mendoza-Barrón, A. Jacobo-Azuara, R. Leyva-Ramos, M.S. Berber-Mendoza, R.M. Guerrero-Coronado, L. Fuentes-Rubio, J.M. Martínez-Rosales, Adsorption of arsenic (V) from a water solution onto a surfactant-modified zeolite. Adsorption 17(3), 489–496 (2011)

    Google Scholar 

  145. Y.S. Minaberry, G.J. Gordillo, The influence of organic ligands on the adsorption of cadmium by suspended matter in natural waters studied by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and electrochemical methods. Chemosphere 78(11), 1356–1361 (2010)

    ADS  Google Scholar 

  146. P. Miralles, E. Johnson, T.L. Church, A.T. Harris, Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J. R. Soc. Interface 9(77), 3514 (2012)

    Google Scholar 

  147. A.K. Mishra, S. Ramaprabhu, Magnetite decorated multiwalled carbon nanotube based supercapacitor for arsenic removal and desalination of seawater. J. Phys. Chem. 114(6), 2583–2590 (2010)

    Google Scholar 

  148. I. Mobasherpour, E. Salahi, M. Ebrahimi, Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: equilibrium and kinetic processes. Res. Chem. Intermed. 38(9), 2205–2222 (2012)

    Google Scholar 

  149. I. Mobasherpour, E. Salahi, M. Ebrahimi, Thermodynamics and kinetics of adsorption of Cu (II) from aqueous solutions onto multi-walled carbon nanotubes. J. Saudi Chem. Soc. 18(6), 792–801 (2014)

    Google Scholar 

  150. D. Mohan, C.U. Pitman Jr., Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137(2), 762–811 (2006)

    Google Scholar 

  151. S. Mohanapriya, V. Lakshminarayanan, Simultaneous purification and spectrophotometric determination of nickel present in as-prepared single-walled carbon nanotubes (SWCNT). Talanta 71(1), 493–497 (2007)

    Google Scholar 

  152. A.A. Moosa, A.M. Ridha, N.A. Hussien, Removal of zinc ions from aqueous solution by bioadsorbents and CNTs. Am. J. Mater. Sci. 6(4), 105–114 (2016)

    Google Scholar 

  153. J.J. Moreno-Barbosa, C. López-Velandia, A. del Pilar Maldonado, L. Giraldo, J.C. Moreno-Piraján, Removal of lead (II) and zinc (II) ions from aqueous solutions by adsorption onto activated carbon synthesized from watermelon shell and walnut shell. Adsorption 19(2–4), 675–685 (2013)

    Google Scholar 

  154. N.M. Mubarak, R.F. Alicia, E.C. Abdullah, J.N. Sahu, A.A. Haslija, J. Tan, Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. J. Environ. Chem. Eng. 1(3), 486–495 (2013)

    Google Scholar 

  155. N.M. Mubarak, R.K. Thines, N.R. Sajuni, E.C. Abdullah, J.N. Sahu, P. Ganesan, N.S. Jayakumar, Adsorption of chromium (VI) on functionalized and non-functionalized carbon nanotubes. Korean J. Chem. Eng. 31(9), 1582–1591 (2014)

    Google Scholar 

  156. N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, P. Ganesan, Microwave-assisted synthesis of multi-walled carbon nanotubes for enhanced removal of Zn (II) from wastewater. Res. Chem. Intermed. 42(4), 3257–3281 (2016)

    Google Scholar 

  157. T.K. Naiya, A.K. Bhattacharya, S.K. Das, Adsorption of Cd (II) and Pb(II) from aqueous solutions on activated alumina. J. Colloid Interface Sci. 333(1), 14–26 (2009)

    ADS  Google Scholar 

  158. S. Nethaji, A. Sivasamy, A.B. Mandal, Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. Int. J. Environ. Sci. Technol. 10(2), 231–242 (2013)

    Google Scholar 

  159. W.W. Ngah, A. Kamari, S. Fatinathan, P.W. Ng, Adsorption of chromium from aqueous solution using chitosan beads. Adsorption 12(4), 249–257 (2006)

    Google Scholar 

  160. A. Nikitin, H. Ogasawara, D. Mann, R. Denecke, Z. Zhang, H. Dai, A. Nilsson, Hydrogenation of single-walled carbon nanotubes. Phys. Rev. Lett. 95(22), 225507 (2005)

    ADS  Google Scholar 

  161. S.A. Ntim, S. Mitra, Removal of trace arsenic to meet drinking water standards using iron oxide coated multiwall carbon nanotubes. J. Chem. Eng. 56(5), 2077–2083 (2011)

    Google Scholar 

  162. S.A. Ntim, S. Mitra, Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification. J. Colloid Interface Sci. 375(1), 154–159 (2012)

    ADS  Google Scholar 

  163. N.E. Okoronkwo, J.C. Igwe, I.J. Okoronkwo, Environmental impacts of mercury and its detoxification from aqueous solutions. Afr. J. Biotechnol. 6(4), 335–340 (2007)

    Google Scholar 

  164. J.D. Orbell, L. Godhino, S.W. Bigger, T.M. Nguyen, L.N. Ngeh, Oil spill remediation using magnetic particles: an experiment in environmental technology. J. Chem. Educ. 74(12), 1446 (1997)

    Google Scholar 

  165. M.Z. Othman, F.A. Roddick, R. Snow, Removal of dissolved organic compounds in fixed-bed columns: evaluation of low-rank coal adsorbents. Water Res. 35(12), 2943–2949 (2001)

    Google Scholar 

  166. J. Pattanayak, K. Mondel, S. Mathew, S.B. Lalvani, A parametric evaluation of the removal of As(V) and As(III) by carbon-based adsorbents. Carbon 38(4), 589–596 (2000)

    Google Scholar 

  167. X. Peng, Z. Luan, J. Ding, Z. Di, Y. Li, B. Tian, Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater. Lett. 59(4), 399–403 (2005)

    Google Scholar 

  168. N.A. Pérez, G. Rincón, L.A. Delgado, N. González, Use of biopolymers for the removal of heavy metals produced by the oil industry—a feasibility study. Adsorption 12(4), 279–286 (2006)

    Google Scholar 

  169. N.V. Perez-Aguilar, E. Munoz-Sandoval, P.E. Diaz-Flores, J.R. Rangel-Mendez, Adsorption of cadmium and lead onto oxidized nitrogen-doped multiwall carbon nanotubes in aqueous solution: equilibrium and kinetics. J. Nanopart. Res. 12(2), 467–480 (2010)

    ADS  Google Scholar 

  170. K. Pillay, E.M. Cukrowska, N.G. Coville, Improved uptake of mercury by sulphur-containing carbon Nanotubes. Microchem. J. 108, 124–130 (2013)

    Google Scholar 

  171. S.R. Popuri, R. Frederick, C.Y. Chang, S.S. Fang, C.C. Wang, L.C. Lee, Removal of copper (II) ions from aqueous solutions onto chitosan/carbon nanotubes composite sorbent. Desalin. Water Treat. 52(4–6), 691–701 (2014)

    Google Scholar 

  172. R. Prabakaran, S. Arivoli, Removal of cobalt (II) from aqueous solutions by adsorption on low cost activated carbon. Int. J. Sci. Eng. Technol. Res. 2(2), 271 (2013)

    Google Scholar 

  173. J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, Methods for carbon nanotubes synthesis. J. Mater. Chem. 21(40), 15872–15884 (2011)

    Google Scholar 

  174. K. Pyrzynska, Application of carbon sorbents for the concentration and separation of metal ions. Jpn. Soc. Anal. Chem. 23(6), 631–637 (2007)

    Google Scholar 

  175. N.D.V. Quyen, T.N. Tuyen, D.Q. Khieu, H. van Minh Hai, D.X. Tin, P.T.N. Lan, I. Kiyoshi, Lead ions removal from aqueous solution using modified carbon nanotubes. Bull. Mater. Sci. 41(1), 6 (2018)

    Google Scholar 

  176. C. Raji, K.P. Shubha, T.S. Anirudhan, Use of chemically modified sawdust in the removal of Pb(II) ions from aqueous media. Indian J. Environ. Health 39(3), 230–238 (1997)

    Google Scholar 

  177. D.V. Ramana, J.S. Yu, K. Seshaiah, Silver nanoparticles deposited multiwalled carbon nanotubes for removal of Cu (II) and Cd (II) from water: surface, kinetic, equilibrium, and thermal adsorption properties. Chem. Eng. J. 223, 806–815 (2013)

    Google Scholar 

  178. D.V. Ramana, Y.Y. Kim, K. Min, Efficient removal of Ni (II) by multi step treated carbon nanotubes from aqueous solutions: kinetic, equilibrium and thermodynamic studies. Indian J. Adv. Chem. Sci. 3, 113–121 (2014)

    Google Scholar 

  179. M.M. Rao, D.K. Reddy, P. Venkateswarlu, K. Seshaiah, Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste. J. Environ. Manag. 90(1), 634–643 (2009)

    Google Scholar 

  180. L. Ray, S. Paul, D. Bera, P. Chattopadhyay, Bioaccumulation of Pb(II) from aqueous solutions by Bacillus cereus M1 16. J. Hazard. Subst. Res. 5(1), 1 (2006)

    Google Scholar 

  181. E. Raymundo-Pinero, T. Cacciaguerra, P. Simon, F. Béguin, A single step process for the simultaneous purification and opening of multi walled carbon nanotubes. Chem. Phys. Lett. 412(1–3), 184–189 (2005)

    ADS  Google Scholar 

  182. O.J.D.L. Redlich, D.L. Peterson, A useful adsorption isotherm. J. Phys. Chem. 63(6), 1024 (1959)

    Google Scholar 

  183. X. Ren, C. Chen, M. Nagatsu, X. Wang, Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem. Eng. J. 170(2–3), 395–410 (2011)

    Google Scholar 

  184. X. Ren, J. Li, X. Tan, X. Wang, Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Trans. 42(15), 5266–5274 (2013)

    Google Scholar 

  185. S. Rengaraj, Y. Jei-Won, K. Younghun, K. Won-Ho, Application of Mg-mesoporous alumina prepared by using magnesium stearate as a template for the removal of nickel: kinetics, isotherm and error analysis. Ind. Eng. Chem. Res. 46(9), 2834–2842 (2007)

    Google Scholar 

  186. P. Rodríguez-Estupiñán, M.B. Barranco, J.C. Moreno-Piraján, L. Giraldo, A comparison of the energetic interactions in the adsorption of Co (II) from aqueous solution on SBA-15 and chemically modified activated carbons. Adsorption 21(8), 623–632 (2015)

    Google Scholar 

  187. E. Rydman, J. Catalán, P. Nymark, J. Palomäki, H. Norppa, H. Alenius, H. Järventaus, Evaluation of the health effects of carbon nanotubes (2013)

  188. B. Sadeghalvad, A.R. Azadmehr, H. Motevalian, Statistical design and kinetic and thermodynamic studies of Ni (II) adsorption on bentonite. J. Central South Univ. 24(7), 1529–1536 (2017)

    Google Scholar 

  189. D. Saha, H.A. Grappe, Adsorption properties of activated carbon fibers, in Woodhead publishing series in textiles, activated carbon fiber and textiles, ed. by J.Y. Chen (Woodhead Publishing, Sawston, 2017), pp. 143–165

    Google Scholar 

  190. E.A. Salam, K.A. El-Nour, A.A. Awad, A.S. Orabi, Carbon nanotubes modified with 5, 7-dinitro-8-quinolinol as potentially applicable tool for efficient removal of industrial wastewater pollutants. Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.02.005

    Article  Google Scholar 

  191. T.A. Saleh, V.K. Gupta, Column with CNT/magnesium oxide composite for lead (II) removal from water. Environ. Sci. Pollut. Res. 19(4), 1224–1228 (2012)

    Google Scholar 

  192. T.A. Saleh, Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. Environ. Sci. Pollut. Res. 22(21), 16721–16731 (2015)

    Google Scholar 

  193. E. Salernitano, L. Giorgi, T. Dikonimos Makris, R. Giorgi, N. Lisi, V. Contini, M. Falconieri, Purification of MWCNTS grown on a nanosized unsupported Fe-based powder catalyst. Diam. Relat. Mater. 16(8), 1565–1570 (2007)

    ADS  Google Scholar 

  194. N. Sankararamakrishnan, A. Gupta, S.R. Vidyarthi, Enhanced arsenic removal at neutral pH using functionalized multiwalled carbon nanotubes. J. Environ. Chem. Eng. 2(2), 802–810 (2014)

    Google Scholar 

  195. Y.M. Scindia, A.K. Pandey, A.V. Reddy, S.B. Manohar, Selective preconcentration and determination of chromium(VI) using a flat sheet polymer inclusion sorbent: potential application for Cr(VI) determination in real samples. Anal. Chem. 74(16), 4204–4212 (2002)

    Google Scholar 

  196. K. Selvi, S. Pattabhi, K. Kadirvelu, Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Bioresour. Technol. 80(1), 87–89 (2001)

    Google Scholar 

  197. N.L.W. Septiani, B. Yuliarto, H.K. Dipojono, Multiwalled carbon nanotubes–zinc oxide nanocomposites as low temperature toluene gas sensor. Appl. Phys. A 123(3), 166 (2017)

    ADS  Google Scholar 

  198. P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A Gen. 253(2), 337–358 (2003)

    Google Scholar 

  199. M.Y. Sfeir, T. Beetz, F. Wang, L. Huang, X.M. Huang, M. Huang, J. Hone, Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 312(5773), 554–556 (2006)

    ADS  Google Scholar 

  200. M.J. Shadbad, A. Mohebbi, A. Soltani, Mercury(II) removal from aqueous solutions by adsorption on multi-walled carbon nanotubes. Korean J. Chem. Eng. 28(4), 1029–1034 (2011)

    Google Scholar 

  201. H.A. Shawky, A.H.M. El-Aassar, D.E. Abo-Zeid, Chitosan/carbon nanotube composite beads: preparation, characterization, and cost evaluation for mercury removal from wastewater of some industrial cities in Egypt. J. Appl. Polym. Sci. 125(S1), E93–E101 (2012)

    Google Scholar 

  202. R.M. Shrestha, M. Varga, I. Varga, A.P. Yadav, B.P. Pokharel, R.R. Pradhananga, Removal of Ni (II) from aqueous solution by adsorption onto activated carbon prepared from Lapsi (Choerospondias axillaris) seed stone. J. Inst. Eng. 9(1), 166–174 (2013)

    Google Scholar 

  203. A. Shukla, Y. Zhang, P. Dubey, J.L. Margrave, S.S. Shukla, The role of sawdust in the removal of unwanted materials from water. J. Hazard. Mater. 95(1–2), 137–152 (2002)

    Google Scholar 

  204. E.S. Shumate, W.G. Strandberg, Accumulation of metals by microbial cells. Compr. Biotechnol. 13, 235–247 (1985)

    Google Scholar 

  205. G.S. Simate, S.E. Iyuke, S. Ndlovu, M. Heydenrych, L.F. Walubita, Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. Environ. Int. 39(1), 38–49 (2012)

    Google Scholar 

  206. S. Singhal, S. Dixit, A.K. Shukla, Structural analysis of carbon nanospheres synthesized by CVD: an investigation of surface charges and its effect on the stability of carbon nanostructures. Appl. Phys. A 125(2), 80 (2019)

    ADS  Google Scholar 

  207. S.K. Smart, A.I. Cassady, G.Q. Lu, D.J. Martin, The biocompatibility of carbon nanotubes. Carbon 44(6), 1034–1047 (2006)

    Google Scholar 

  208. S. Sobhanardakani, R. Zandipak, M. Cheraghi, Adsorption of Cu2+ ions from aqueous solutions using oxidized multi-walled carbon nanotubes. Avicenna J. Environ. Health Eng. 2(1), e790 (2015)

    Google Scholar 

  209. A. Somayajula, A.A. Aziz, P. Saravanan, M. Matheswaran, Adsorption of mercury (II) ion from aqueous solution using low-cost activated carbon prepared from mango kernel. Asia Pac. J. Chem. Eng. 8(1), 1–10 (2013)

    Google Scholar 

  210. M.K. Sreedhar, A. Madhukumar, T.S. Anirudhan, Evaluation of an adsorbent prepared by treating coconut husk with polysulphide for removal of mercury from wastewater. Indian J. Eng. Mater. Sci. 6(5), 279–285 (1999)

    Google Scholar 

  211. A. Stafiej, K. Pyrzynska, Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 58(1), 49–52 (2007)

    Google Scholar 

  212. W. Sun, B. Jiang, F. Wang, N. Xu, Effect of carbon nanotubes on Cd (II) adsorption by sediments. Chem. Eng. J. 264, 645–653 (2015)

    Google Scholar 

  213. M. Taghizadeh, A.A. Asgharinezhad, N. Samkhaniany, A. Tadjarodi, A. Abbaszadeh, M. Pooladi, Solid phase extraction of heavy metal ions based on a novel functionalized magnetic multi-walled carbon nanotube composite with the aid of experimental design methodology. Microchim. Acta 181(5–6), 597–605 (2014)

    Google Scholar 

  214. X. Tan, M. Fang, C. Chen, S. Yu, X. Wang, Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution. Carbon 46(13), 1741–1750 (2008)

    Google Scholar 

  215. B.S. Tawabini, S.F. Al-Khaldi, M.M. Khaled, M.A. Atieh, Removal of arsenic from water by iron oxide nanoparticles impregnated on carbon nanotubes. J Environ. Sci. Health Part A 46(3), 215–223 (2011)

    Google Scholar 

  216. M. Teker, M. IMAMOĞLU, Ö. SALTABAŞ, Adsorption of copper and cadmium ions by activated carbon from rice hulls. Turk. J. Chem. 23(2), 185–192 (1999)

    Google Scholar 

  217. M. Terronesa, A.R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y.I. Vega-Cantú, F.J. Rodríguez-Macías, H. Terrones, Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5(4), 351–372 (2010)

    Google Scholar 

  218. M.A. Tofighy, T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J. Hazard. Mater. 185(1), 140–147 (2011)

    Google Scholar 

  219. United Nations World Water Assessment Programme (WWAP)/UN-Water, The United Nations World Water Development Report 2018: Nature-Based Solutions for Water (UNESCO, Paris, 2018)

    Google Scholar 

  220. I. Uzun, F. Guzel, Adsorption of some heavy metal ions from aqueous solution by activated carbon and comparison of percent adsorption results of activated carbon with those of some other adsorbents. Turk. J. Chem. 24(3), 291–297 (2000)

    Google Scholar 

  221. S. Veli, B. Alyüz, Adsorption of copper and zinc from aqueous solutions by using natural clay. J. Hazard. Mater. 149(1), 226–233 (2007)

    Google Scholar 

  222. Z. Veličković, G.D. Vuković, A.D. Marinković, M.S. Moldovan, A.A. Perić-Grujić, P.S. Uskoković, M.Đ. Ristić, Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes. Chem. Eng. J. 181–182, 174–181 (2012)

    Google Scholar 

  223. D. Vu, Z. Li, H. Zhang, W. Wang, Z. Wang, X. Xu, C. Wang, Adsorption of Cu (II) from aqueous solution by anatase mesoporous TiO2 nanofibers prepared via electrospinning. J. Colloid Interface Sci. 367(1), 429–435 (2012)

    ADS  Google Scholar 

  224. G.D. Vuković, A.D. Marinković, M. Čolić, M.Đ. Ristić, R. Aleksić, A.A. Perić-Grujić, P.S. Uskoković, Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem. Eng. J. 157(1), 238–248 (2010)

    Google Scholar 

  225. H. Wang, A. Zhou, F. Peng, H. Yu, J. Yang, Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). J. Colloid Interface Sci. 316(2), 277–283 (2007)

    ADS  Google Scholar 

  226. J. Wang, X. Ma, G. Fang, M. Pan, X. Ye, S. Wang, Preparation of iminodiacetic acid functionalized multi-walled carbon nanotubes and its application as sorbent for separation and preconcentration of heavy metal ions. J. Hazard. Mater. 186(2–3), 1985–1992 (2011)

    Google Scholar 

  227. Q. Wang, J. Li, C. Chen, X. Ren, J. Hu, X. Wang, Removal of cobalt from aqueous solution by magnetic multiwalled carbon nanotube/iron oxide composites. Chem. Eng. J. 174(1), 126–133 (2011)

    Google Scholar 

  228. S. Wang, W. Gong, X. Liu, Y. Yao, Y. Gao, Q. Yue, Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep. Purif. Technol. 58(1), 17–23 (2007)

    Google Scholar 

  229. S. Wang, L. Tan, J. Jiang, J. Chen, L. Feng, Preparation and characterization of nanosized TiO2 powder as an inorganic adsorbent for aqueous radionuclide Co (II) ions. J. Radioanal. Nucl. Chem. 295(2), 1305–1312 (2013)

    Google Scholar 

  230. Y. Wang, L. Gao, J. Sun, Y. Liu, S. Zheng, H. Kajiura, K. Noda, An integrated route for purification, cutting and dispersion of single-walled carbonnanotubes. Chem. Phys. Lett. 432(1–3), 205–208 (2006)

    ADS  Google Scholar 

  231. Z. Wang, Mechanisms of cadmium toxicity to various trophic saltwater organisms (Nova Science Publishers, Hauppauge, 2010)

    Google Scholar 

  232. P.G. Wiles, J. Abrahamson, Carbon fiber layers on arc electrodes—I: their properties and cool-down behavior. Carbon 16(5), 341–349 (1978)

    Google Scholar 

  233. K. Wilson, H. Yang, C.W. Seo, W.E. Marshall, Select metal adsorption by activated carbon made from peanut shells. Biosour. Technol. 97(18), 2266–2270 (2007)

    Google Scholar 

  234. World Health Organization, WHO, Zinc in Drinking-Water, Guidelines for Drinking-Water Quality, Geneva. (WHO/SDE/WSH/03.04/17), Vol. 2 (2003)

  235. World Health Organization, Guidelines for drinking water quality Incorporating First and Second Addenda, vol. 1, Recommendations, third edition, Geneva, Switzerland (2008)

  236. L. Xiong, C. Chen, Q. Chen, J. Ni, Adsorption of Pb(II) and Cd (II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method. J. Hazard. Mater. 189(3), 741–748 (2011)

    Google Scholar 

  237. D. Xu, X. Tan, C. Chen, X. Wang, Removal of Pb(II) from aqueous solution by oxidized multi-walled carbon nanotubes. J. Hazard. Mater. 154(1–3), 407–416 (2008)

    Google Scholar 

  238. J. Xu, Z. Cao, Y. Zhang, Z. Yuan, Z. Lou, X. Xu, X. Wang, A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195, 351–364 (2018)

    ADS  Google Scholar 

  239. K. Yaghmaeian, R.K. Mashizi, S. Nasseri, A.H. Mahvi, M. Alimohammadi, S. Nazmara, Removal of inorganic mercury from aquatic environments by multi-walled carbon nanotubes. J. Environ. Health sci. Eng. 13, 55 (2015)

    Google Scholar 

  240. C.M. Yang, K. Kaneko, M. Yudasaka, S. Iijima, Surface chemistry and pore structure of purified HiPco single-walled carbon nanotube aggregates. Phys. B 323(1–4), 140–142 (2002)

    ADS  Google Scholar 

  241. J.Y. Yang, X.Y. Jiang, F.P. Jiao, J.G. Yu, X.Q. Chen, Fabrication of diiodocarbene functionalized oxidized multi-walled carbon nanotube and its aqueous adsorption performance toward Pb(II). Environ. Earth Sci. 76(20), 677 (2017)

    Google Scholar 

  242. Q.H. Yang, P.X. Hou, S. Bai, M.Z. Wang, H.M. Cheng, Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes. Chem. Phys. Lett. 345(1–2), 18–24 (2001)

    ADS  Google Scholar 

  243. S. Yang, J. Li, D. Shao, J. Hu, X. Wang, Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166(1), 109–116 (2009)

    Google Scholar 

  244. J. Yang, Y.Li Dong, J. Liu, F. Min, Y. Li, Removal of Co(II) from aqueous solutions by sulfonated magnetic multi-walled carbon nanotubes. Chem. Eng. 32(11), 2247–2256 (2015)

    Google Scholar 

  245. L.J. Yu, S.S. Shukla, K.L. Dorris, A. Shukla, J.L. Margrave, Adsorption of chromium from aqueous solutions by maple sawdust. J. Hazard. Mater. 100(1–3), 53–63 (2003)

    Google Scholar 

  246. Jin-Gang Yu, Xiu-Hui Zhao, Yu. Lin-Yan, Fei-Peng Jiao, Jian-Hui Jiang, Xiao-Qing Chen, Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes. J. Radioanal. Nuclear Chem. 299(3), 1155–1163 (2014)

    Google Scholar 

  247. X. Yu, T. Luo, Y. Zhang, Y. Jia, B. Zhu, X. Fu, X. Huang, Adsorption of lead(II) on O2-plasma-oxidized multi-walled carbon nanotubes. ACS Appl. Mater. Interfaces. 3(7), 2585–2593 (2011)

    Google Scholar 

  248. K. Zare, V.K. Gupta, O. Moradi, A.H. Makhlouf, M. Sillanpää, M.N. Nadagouda, M. Kazemi, A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: a review. J. Nanostruct. Chem 5(2), 227–236 (2015)

    Google Scholar 

  249. M. Zenasni, B. Meroufel, S. Benfarhi, A. Merlin, S. Molina, B. George, Adsorption of zinc in aqueous solution onto natural maghnite modified by 3-aminopropyltriethoxysilane. J. Mater. Environ. Sci. 6(3), 826–833 (2015)

    Google Scholar 

  250. D. Zhang, Y. Yin, J. Liu, Removal of Hg2+ and methylmercury in waters by functionalized multi-walled carbon nanotubes: adsorption behavior and the impacts of some environmentally relevant factors. Chem. Speciat. Bioavailab. 29(1), 161–169 (2017)

    Google Scholar 

  251. J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, Z. Du, Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B 107(16), 3712–3718 (2003)

    Google Scholar 

  252. S. Zhang, H. Niu, Y. Cai, X. Zhao, Y. Shi, Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 158(3), 599–607 (2010)

    Google Scholar 

  253. X. Zhang, M. Chen, Y. Yu, T. Yang, J. Wang, Polyelectrolyte-modified multi-walled carbon nanotubes for the adsorption of chromium(VI). Anal. Methods 3(2), 457–462 (2011)

    Google Scholar 

  254. G. Zhao, X. Ren, X. Gao, X. Tan, J. Li, C. Chen, X. Wang, Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 40(41), 10945–10952 (2011)

    Google Scholar 

  255. Y. Zhao, B.L. Allen, A. Star, Enzymatic degradation of multiwalled carbon nanotubes. J. Phys. Chem. A 115(34), 9536–9544 (2011)

    Google Scholar 

  256. H. Zheng, D. Liu, Y. Zheng, S. Liang, Z. Liu, Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J. Hazard. Mater. 167(1–3), 141–147 (2009)

    ADS  Google Scholar 

  257. H. Zhu, Y. Jia, X. Wu, H. Wang, Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. 172(2–3), 1591–1596 (2009)

    Google Scholar 

  258. M.S. Zoromba, M.I. Ismail, M. Bassyouni, M.H. Abdel-Aziz, N. Salah, A. Alshahrie, A. Memic, Fabrication and characterization of poly (aniline-co-o-anthranilic acid)/magnetite nanocomposites and their application in wastewater treatment. Colloids Surf. A 520, 121–130 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bassyouni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassyouni, M., Mansi, A.E., Elgabry, A. et al. Utilization of carbon nanotubes in removal of heavy metals from wastewater: a review of the CNTs’ potential and current challenges. Appl. Phys. A 126, 38 (2020). https://doi.org/10.1007/s00339-019-3211-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3211-7

Navigation