Skip to main content
Log in

A novel bilayer zein/MMT nanocomposite incorporated with H. perforatum oil for wound healing

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Recently, layered structures composed of nanofibers have gained attention as a novel material to mimic skin tissue in wound healing applications. The aim of this study is to develop a novel hybrid bilayer material composed of zein based composite film and nanofiber layers as a wound dressing material. The upper layer was composed of H. perforatum oil incorporated zein film including MMT and the bottom layer was comprised of 3D electrospun zein/MMT nanofibers to induce wound healing with the controlled release of H. perforatum oil. The bilayer composites were characterized in terms of mechanical test, WVP, water uptake and surface wettability. Antimicrobial activity of the wound dressings against microorganisms were investigated by disc diffusion method. In vitro cytotoxicity of monolayer film and bilayer structure was performed using WST-1 assay on HS2 keratinocyte and 3T3 cell lines. Results indicated that the prepared monolayer films showed appropriate mechanical and gas barrier properties and surface wettability for wound healing. Controlled release of H. perforatum oil was obtained from fabricated membranes up to 48 h. Bilayer membranes showed antimicrobial activity against E. coli, S. aureus, and C. albicans and did not show any toxic effect on NIH3T3 mouse fibroblast and HS2 keratinocyte cell lines. In vitro scratch assay results indicated that H. perforatum oil had a wound healing effect by inducing fibroblast migration. The proliferation study supported these results by increasing fibroblast proliferation on H. perforatum oil loaded bilayer membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Boateng JS, Mathews KH, Stevens HN, Eccleston GM. et al. Wound healing dressings and drug delivery systems: A review. J Pharm Sci. 2008;97:2892–923. https://doi.org/10.1002/jps.

    Article  CAS  Google Scholar 

  2. Dias AMA, Braga MEM, Seabra IJ. et al. Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. Int J Pharm. 2011;408:9–19. https://doi.org/10.1016/j.ijpharm.2011.01.063.

    Article  CAS  Google Scholar 

  3. Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014;463:127–36. https://doi.org/10.1016/j.ijpharm.2013.12.015.

    Article  CAS  Google Scholar 

  4. Chen S, Liu B, Carlson MA, et al. Recent advances in electrospun nanofibers for wound healing. Nanomedicine. 2017;12:1335–52. https://doi.org/10.2217/nnm-2017-0017.

    Article  Google Scholar 

  5. Venugopal J, Ramakrishna S. Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration. Tissue Eng. 2005;11:847–54. https://doi.org/10.1089/ten.2005.11.847.

    Article  CAS  Google Scholar 

  6. Figueira DR, Miguel SP, de Sá KD, Correia IJ. Production and characterization of polycaprolactone-hyaluronic acid/chitosan-zein electrospun bilayer nanofibrous membrane for tissue regeneration. Int J Biol Macromol. 2016;93:1100–10. https://doi.org/10.1016/j.ijbiomac.2016.09.080.

    Article  CAS  Google Scholar 

  7. Hassiba A, El Zowalaty M, Webster T, et al. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications. Int J Nanomed. 2017;12:2205–13. https://doi.org/10.2147/IJN.S123417.

    Article  CAS  Google Scholar 

  8. Corradini E, Curti PS, Meniqueti AB, et al. Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. Int J Mol Sci. 2014;15:22438–470. https://doi.org/10.3390/ijms151222438.

    Article  CAS  Google Scholar 

  9. Salerno A, Zeppetelli S, Oliviero M, et al. Microstructure, degradation and in vitro MG63 cells interactions of a new poly(-caprolactone), zein, and hydroxyapatite composite for bone tissue engineering. J Bioact Compat Polym. 2012;27:210–26. https://doi.org/10.1177/0883911512442564.

    Article  CAS  Google Scholar 

  10. Luo Y, Wang Q. Zein-based micro- and nano-particles for drug and nutrient delivery: a review. J Appl Polym Sci. 2014;131:1–12. https://doi.org/10.1002/app.40696.

    Article  Google Scholar 

  11. Paliwal R, Palakurthi S. Zein in controlled drug delivery and tissue engineering. J Control Release. 2014;189:108–22. https://doi.org/10.1016/j.jconrel.2014.06.036.

    Article  CAS  Google Scholar 

  12. Patel AR, Velikov KP. Zein as a source of functional colloidal nano- and microstructures. Curr Opin Colloid Interface Sci. 2014;19:450–8. https://doi.org/10.1016/j.cocis.2014.08.001.

    Article  CAS  Google Scholar 

  13. Park JH, Park SM, Kim YH, et al. Effect of montmorillonite on wettability and microstructure properties of zein/montmorillonite nanocomposite nanofiber mats. J Compos Mater. 2012;47:251–7. https://doi.org/10.1177/0021998312439221.

    Article  Google Scholar 

  14. Alcantara ACS, Darder M, Aranda P, Ruiz-Hitzky E. Zein-fibrous clays biohybrid materials. Eur J Inorg Chem. 2012:5216–24. https://doi.org/10.1002/ejic.201200582.

    Article  Google Scholar 

  15. Calabrese I, Gelardi G, Merli M, et al. Clay-biosurfactant materials as functional drug delivery systems: slowing down effect in the in vitro release of cinnamic acid. Appl Clay Sci. 2017;135:567–74. https://doi.org/10.1016/j.clay.2016.10.039.

    Article  CAS  Google Scholar 

  16. Lal S, Perwez A, Rizvi MA, Datta M. Design and development of a biocompatible montmorillonite PLGA nanocomposites to evaluate in vitro oral delivery of insulin. Appl Clay Sci. 2017;147:69–79. https://doi.org/10.1016/j.clay.2017.06.031.

    Article  CAS  Google Scholar 

  17. Ul-Islam M, Khan T, Khattak WA, Park JK. Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose. 2013;20:589–96. https://doi.org/10.1007/s10570-012-9849-3.

    Article  CAS  Google Scholar 

  18. Saddiqe Z, Naeem I, Maimoona A. A review of the antibacterial activity of Hypericum perforatum L. J Ethnopharmacol. 2010;131:511–21. https://doi.org/10.1016/j.jep.2010.07.034.

    Article  CAS  Google Scholar 

  19. Süntar IP, Akkol EK, Yilmazer D, et al. Investigations on the in vivo wound healing potential of Hypericum perforatum L. J Ethnopharmacol. 2010;127:468–77. https://doi.org/10.1016/j.jep.2009.10.011.

    Article  Google Scholar 

  20. Dikmen M, Öztürk Y, Sagratini G, et al. Evaluation of the wound healing potentials of two subspecies of hypericum perforatum on cultured NIH3T3 fibroblasts. Phyther Res. 2011;25:208–14. https://doi.org/10.1002/ptr.3243.

    Article  Google Scholar 

  21. Samadi S, Khadivzadeh T, Emami A, et al. The effect of Hypericum perforatum on the wound healing and scar of cesarean. J Alter Complement Med. 2010;16:113–7. https://doi.org/10.1089/acm.2009.0317.

    Article  Google Scholar 

  22. Güneş S, Tıhmınlıoğlu F. Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material. Int J Biol Macromol. 2017;102. https://doi.org/10.1016/j.ijbiomac.2017.04.080.

    Article  Google Scholar 

  23. Kiaee G, Etaat M, Kiaee B, et al. Multilayered controlled released topical patch containing tetracycline for wound dressing. J In Silico In Vitro Pharmacol. 2016;2. No. 1:9.

  24. Tihminlioglu F, Atik ID, Özen B. Water vapor and oxygen-barrier performance of corn-zein coated polypropylene films. J Food Eng. 2010;96:342–7. https://doi.org/10.1016/j.jfoodeng.2009.08.018.

    Article  CAS  Google Scholar 

  25. Kimna C, Tamburaci S, Tihminlioglu F. Novel zein-based multilayer wound dressing membranes with controlled release of gentamicin. J Biomed Mater Res–Part B Appl Biomater. 2018:1–14. https://doi.org/10.1002/jbm.b.34298.

    Article  Google Scholar 

  26. Eğri Ö, Erdemir N. Production of Hypericum perforatum oil-loaded membranes for wound dressing material and in vitro tests. Artif Cells Nanomed Biotechnol. 2019;47:1404–15. https://doi.org/10.1080/21691401.2019.1596933.

    Article  Google Scholar 

  27. Zahedi P, Karami Z, Rezaeian I, et al. Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(Ïμ-caprolactone) blends. J Appl Polym Sci. 2012;124:4174–83. https://doi.org/10.1002/app.35372.

    Article  CAS  Google Scholar 

  28. ISO 10993–5. Biological evaluation of medical devices–Part 5: Tests for in vitro cytotoxicity. 2009.

  29. Peter M, Thodi P, Kumar S, et al. Development of novel a-chitin/nanobioactive glass ceramic composite scaffolds for tissue engineering applications. Carbohydr Polym. 2009;78:926–31. https://doi.org/10.1016/j.carbpol.2009.07.016.

    Article  CAS  Google Scholar 

  30. Liang C-C, Park AY, Guan J-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2:329–33. https://doi.org/10.1038/nprot.2007.30.

    Article  CAS  Google Scholar 

  31. Akturk O, Tezcaner A, Bilgili H, Deveci M, Gecit MKD. Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. J Biosci Bioeng. 2011;112:279–88.

    Article  CAS  Google Scholar 

  32. Priya SG, Gupta A, Jain E, et al. Bilayer cryogel wound dressing and skin regeneration grafts for the treatment of acute skin wounds. ACS Appl Mater Interfaces. 2016;8:15145–59. https://doi.org/10.1021/acsami.6b04711.

    Article  CAS  Google Scholar 

  33. Yoshino T, Isobe S, Maekawa T. Influence of preparation conditions on the physical properties of zein films. J Am Oil Chem Soc. 2002;79:345–9. https://doi.org/10.1007/s11746-002-0486-6.

    Article  CAS  Google Scholar 

  34. Khan MIH, Islam JMM, Kabir W, et al. Development of hydrocolloid Bi-layer dressing with bio-adhesive and non-adhesive properties. Mater Sci Eng C. 2016;69:609–15. https://doi.org/10.1016/j.msec.2016.07.029.

    Article  CAS  Google Scholar 

  35. Arcan I. Controlled release properties of zein—fatty acid blend films for multiple bioactive compounds. J Agric Food Chem. 2014;62:8238–46.

    Article  CAS  Google Scholar 

  36. Gu L, Wang M, Zhou J. Effects of protein interactions on properties and microstructure of zein-gliadin composite films. J Food Eng. 2013;119:288–98. https://doi.org/10.1016/j.jfoodeng.2013.05.022.

    Article  CAS  Google Scholar 

  37. Liu SJ, Kau YC, Chou CY, et al. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. J Memb Sci. 2010;355:53–9. https://doi.org/10.1016/j.memsci.2010.03.012.

    Article  CAS  Google Scholar 

  38. Suganya S, Venugopal J, Ramakrishna S, et al. Naturally derived biofunctional nanofibrous scaffold for skin tissue regeneration. Int J Biol Macromol. 2014. https://doi.org/10.1016/j.ijbiomac.2014.04.031.

    Article  CAS  Google Scholar 

  39. Liu Y, Wang S, Zhang R, et al. Development of poly(lactic acid)/chitosan fibers loaded with essential oil for antimicrobial applications. Nanomaterials. 2017;7:194. https://doi.org/10.3390/nano7070194.

    Article  Google Scholar 

  40. Kim MS, Kim D, Kang JK, et al. Migration of human dermal fibroblast is affected by the diameter of the electrospun PLGA fiber. Biomater Res. 2012. 16:135–9.

  41. Zhang Y, Chwee TL, Ramakrishna S, Huang ZM. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med. 2005;16:933–46.

    Article  CAS  Google Scholar 

  42. Chong EJ, Phan TT, Lim IJ, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007;3:321–30. https://doi.org/10.1016/j.actbio.2007.01.002.

    Article  CAS  Google Scholar 

  43. MacNeil S. Progress and opportunities for tissue-engineered skin. Nature. 2007;445:874–80.

    Article  CAS  Google Scholar 

  44. Torres-giner S, Gimenez E, Lagaron JM. Characterization of the morphology and thermal properties of zein prolamine nanostructures obtained by electrospinning. Food Hydrocolloid 2008;22:601–14. https://doi.org/10.1016/j.foodhyd.2007.02.005.

    Article  CAS  Google Scholar 

  45. Vogt L, Liverani L. Electrospun zein fibers incorporating poly (glycerol sebacate) for soft tissue engineering. 2018:1–16. https://doi.org/10.3390/nano8030150.

    Article  Google Scholar 

  46. Han YL, Xu Q, Lu ZQ, Wang JY. Preparation of transparent zein films for cell culture applications. Colloids Surf B Biointerfaces. 2014;120:55–62. https://doi.org/10.1016/j.colsurfb.2014.04.019.

    Article  CAS  Google Scholar 

  47. Ozcalik O, Tihminlioglu F. Barrier properties of corn zein nanocomposite coated polypropylene films for food packaging applications. J Food Eng. 2013;114:505–13. https://doi.org/10.1016/j.jfoodeng.2012.09.005.

    Article  CAS  Google Scholar 

  48. Yuan Y, Lee TR. Contact angle and wetting properties. In: Surface science techniques. Springer, Berlin, Heidelberg, 2013. pp 3–34.

    Chapter  Google Scholar 

  49. Deng L, Kang X, Liu Y, et al. Characterization of gelatin/zein films fabricated by electrospinning vs solvent casting. Food Hydrocoll. 2018;74:324–32. https://doi.org/10.1016/j.foodhyd.2017.08.023.

    Article  CAS  Google Scholar 

  50. Shi K, Kokini JL, Huang Q. Engineering zein films with controlled surface morphology and hydrophilicity engineering zein films with controlled surface morphology and hydrophilicity. J Agric Food Chem. 2009;57:2186–92. https://doi.org/10.1021/jf803559v.

    Article  CAS  Google Scholar 

  51. Crockett SL. Essential oil and volatile components of the genus Hypericum (Hypericaceae). Nat Prod Commun 2010;5.9:1934578X1000500926.

    Article  Google Scholar 

  52. Li K, Yin S, Yang X, et al. Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein—sodium caseinate (SC) nanoparticles. J Agric Food Chem 2012. https://doi.org/10.1021/jf302752v.

    Article  CAS  Google Scholar 

  53. Cojocariu A, Profire L, Aflori M, Vasile C. In vitro drug release from chitosan/Cloisite 15A hydrogels. Appl Clay Sci. 2012;57:1–9. https://doi.org/10.1016/j.clay.2011.11.030.

    Article  CAS  Google Scholar 

  54. Elkhyat A, Mac-Mary S, Humbert P. Skin Wettability and Friction. Handbook of cosmetic science and technology, 2009;427:337–44.

  55. Prabhakaran MP, Venugopal JR, Chyan TT, et al. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A. 2008;14:1787–97. https://doi.org/10.1089/ten.tea.2007.0393.

    Article  CAS  Google Scholar 

  56. Menzies KL, Jones L. The impact of contact angle on the biocompatibility of biomaterials. Optom Vis Sci. 2010;87:387–99. https://doi.org/10.1097/OPX.0b013e3181da863e.

    Article  Google Scholar 

  57. Abdollahi M, Rezaei M, Farzi G. A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J Food Eng. 2012;111:343–50. https://doi.org/10.1016/j.jfoodeng.2012.02.012.

    Article  CAS  Google Scholar 

  58. Kouchak M, Ameri A, Naseri B, Kargar Boldaji S. Chitosan and polyvinyl alcohol composite films containing nitrofurazone: preparation and evaluation. Iran J Basic Med Sci. 2014;17:14–20.

    CAS  Google Scholar 

  59. Shelma R, Paul W, Sharma CP. Chitin nanofibre reinforced thin chitosan films for wound healing application. Trends Biomater Artif Organs. 2008;22:107–11.

    Google Scholar 

  60. Zahedi P, Rezaeian I, Ranaei-Siadat SO, et al. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol. 2010;21:77–95.

    Article  CAS  Google Scholar 

  61. Akin O, Tihminlioglu F. Effects of organo-modified clay addition and temperature on the water vapor barrier properties of polyhydroxy butyrate homo and copolymer nanocomposite films for packaging applications. J Polym Environ. 2018. https://doi.org/10.1007/s10924-017-1017-2.

    Article  Google Scholar 

  62. Bonilla J, Atarés L, Vargas M, Chiralt A. Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocoll. 2012;26:9–16. https://doi.org/10.1016/j.foodhyd.2011.03.015.

    Article  CAS  Google Scholar 

  63. Altiok D, Altiok E, Tihminlioglu F. Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. J Mater Sci Mater Med. 2010;21:2227–36. https://doi.org/10.1007/s10856-010-4065-x.

    Article  CAS  Google Scholar 

  64. Rojas-Graü Ma, Avena-Bustillos RJ, Olsen C, et al. Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate-apple puree edible films. J Food Eng. 2007;81:634–41. https://doi.org/10.1016/j.jfoodeng.2007.01.007.

    Article  Google Scholar 

  65. Xu R, Xia H, He W, et al. Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci Rep. 2016;6:1–12. https://doi.org/10.1038/srep24596.

    Article  Google Scholar 

  66. Dreifke MB, Jayasuriya AA, Jayasuriya AC. Current wound healing procedures and potential care. Mater Sci Eng C. 2015;48:651–62. https://doi.org/10.1016/j.msec.2014.12.068.

    Article  CAS  Google Scholar 

  67. Kataria K, Gupta A, Rath G, et al. In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int J Pharm. 2014;469:102–10. https://doi.org/10.1016/j.ijpharm.2014.04.047.

    Article  CAS  Google Scholar 

  68. Abdollahzadeh E, Rezaei M, Hosseini H. Antibacterial activity of plant essential oils and extracts: the role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control. 2014;35:177–83. https://doi.org/10.1016/j.foodcont.2013.07.004.

    Article  CAS  Google Scholar 

  69. Kıyan S, Uyanikgil Y, Altunci AY. Investigation of acute effects of hypericum perforatum (Kantaron) treatment in experimental thermal burns and comparison with silver sulfadiazine treatment. Turkish J Trauma Emerg Surg. 2015;21:323–36. https://doi.org/10.5505/tjtes.2015.63822.

    Article  Google Scholar 

  70. Nazlı O, Baygar T, Elif Ç, et al. Antimicrobial and antibiofilm activity of polyurethane/Hypericum perforatum extract (PHPE) composite. Bioorg Chem. 2019;82:224–8. https://doi.org/10.1016/j.bioorg.2018.08.017.

    Article  Google Scholar 

  71. Viseras C, Carazo ESC, Borrego-Sánchez A, et al. Clay Minerals in Skin Drug Delivery. Clays and Clay Minerals, 2019;67:59–71.

    Article  Google Scholar 

  72. Mishra RK, Ramasamy K, Lim SM, et al. Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films. J Mater Sci Mater Med. 2014;25:1925–39. https://doi.org/10.1007/s10856-014-5228-y.

    Article  CAS  Google Scholar 

  73. Sun QS, Dong J, Lin ZX, et al. Comparison of cytocompatibility of zein film with other biomaterials and its degradability in vitro. Biopolymers. 2005;78:268–74. https://doi.org/10.1002/bip.20298.

    Article  CAS  Google Scholar 

  74. Nakatani S, Mano H, Sampei C, et al. Chondroprotective effect of the bioactive peptide prolyl-hydroxyproline in mouse articular cartilage in vitro and in vivo. Osteoarthr Cartil. 2009;17:1620–7. https://doi.org/10.1016/j.joca.2009.07.001.

    Article  CAS  Google Scholar 

  75. Shigemura YS, Iwai K, Morimatsu F, Iwamoto T, Mori T, Chikako O et al. Effect of prolyl-hydroxyproline (Pro-Hyp), a food-derived collagen peptide in human blood, on growth of fibroblasts from mouse skin. J Agric Food Chem. 2009;57:444–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to İzmir Institute of Technology (Iztech) Biotechnology and Bioengineering Research and Application Center (IZTECH BIOMER) for antimicrobial activity tests, microscopy analyses and Center for Materials Research (IZTECH CMR) for SEM and AFM analyses. The content stored in and created with MindtheGraph.com was used in graphical abstract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Funda Tihminlioglu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunes, S., Tamburaci, S. & Tihminlioglu, F. A novel bilayer zein/MMT nanocomposite incorporated with H. perforatum oil for wound healing. J Mater Sci: Mater Med 31, 7 (2020). https://doi.org/10.1007/s10856-019-6332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6332-9

Navigation