Skip to main content
Log in

Effect of Heat-Treatment on Self-healing and Processing Behavior of Thermally Reversible Polyurethanes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Given its thermal reversibility, high yield, and minimal side reactions, the Diels–Alder (DA) reaction is a particularly desirable technique for the preparation of polymeric materials with heat-stimulated self-healing properties. A linear self-healing polyurethane containing thermally reversible DA bonds (PU-DA) was developed in this study. Results revealed that the introduction of DA bonds conferred outstanding mechanical property and thermal reversibility to PU-DA films. Thus, the as-prepared PU-DA films demonstrated excellent self-healing performance. The self-healing behavior of the PU-DA films under various heat treatments was examined through qualitative observation and quantitative measurements. The PU-DA underwent self-repair through the combination of two healing actions, i.e., the thermal movement of molecular chains and the thermally reversible DA reaction. Moreover, the self-healing behavior of the PU-DA was repeatable, and the PU-DA continued to present high strength even after undergoing three damage–repair cycles at the same site. In addition, the as-prepared PU-DA exhibited excellent macro-scale self-healing behavior, and it endowed the PU-DA presented reprocessing performance. The PU-DA can be recycled given its excellent self-healing and outstanding reprocessing performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gojzewski H, Imre B, Check C et al (2016) J Polym Sci Polym Phys 54:2298

    Article  CAS  Google Scholar 

  2. Kasprzyk P, Sadowska E, Datta J (2019) J Polym Environ 27(11):2588

    Article  CAS  Google Scholar 

  3. Zimmer B, Nies C, Schmitt C et al (2017) Polymer 115:77

    Article  CAS  Google Scholar 

  4. Krol P (2007) Prog Mater Sci 52(6):915

    Article  CAS  Google Scholar 

  5. Tsou CH, Lee HT, Tsai HA et al (2013) Polym Degrad Stab 98:643

    Article  CAS  Google Scholar 

  6. Galhano R, Acero NF, Matos S et al (2018) J Polym Environ 26(1):91

    Article  Google Scholar 

  7. Holder KM, Cain AA, Plummer MG et al (2016) Macromol Mater Eng 301:665

    Article  CAS  Google Scholar 

  8. Yu ZY, Feng LB, Chai CS et al (2016) Acta Polym Sin 11:1579

    Google Scholar 

  9. Du P, Wu M, Liu X et al (2014) New J Chem 38:770

    Article  CAS  Google Scholar 

  10. Wu DY, Meure S, Solomon D (2008) Prog Polym Sci 33:479

    Article  CAS  Google Scholar 

  11. Burattini S, Greenland BW, Chappell D et al (2010) Chem Soc Rev 39:1973

    Article  CAS  Google Scholar 

  12. Blaiszik BJ, Kramer SLB, Olugebefola SC et al (2010) Annu Rev Mater Res 40:179

    Article  CAS  Google Scholar 

  13. Youngblood JP, Sottos NR (2008) MRS Bull 33:732

    Article  CAS  Google Scholar 

  14. Liu C, Ma C, Xie Q et al (2017) J Mater Chem A 5:15855

    Article  CAS  Google Scholar 

  15. Daicho H (2012) Nat Commun 3:1132

    Article  Google Scholar 

  16. Peterson AM, Jensen RE, Palmese GR (2010) ACS Appl Mater Inter 2:1141

    Article  CAS  Google Scholar 

  17. Liu YL, Hsieh CY (2006) J Polym Sci Polym Chem 44:905

    Article  CAS  Google Scholar 

  18. Duval A, Couture G, Caillol S et al (2017) ACS Sustain Chem Eng 5:1199

    Article  CAS  Google Scholar 

  19. Cheng X, Peng C, Zhang D et al (2013) J Polym Sci A 51:1205

    Article  CAS  Google Scholar 

  20. Liu YL, Chuo TW (2013) Polym Chem 4:2194

    Article  CAS  Google Scholar 

  21. Boufi S, Belgacem MN, Quillerou J et al (1993) Macromolecules 26:6706

    Article  CAS  Google Scholar 

  22. Feng LB, Yu ZY, Bian YH et al (2017) Polym 124:48

    Article  CAS  Google Scholar 

  23. Nandivada H, Jiang X, Lahann J (2007) Adv Mater 19:2197

    Article  CAS  Google Scholar 

  24. Feng LB, Zhao HW, He X et al (2019) Polym Eng Sci 59:1603

    Article  CAS  Google Scholar 

  25. Gandini A (2010) Polym Chem 1:245

    Article  CAS  Google Scholar 

  26. Gandini A (2013) Prog Polym Sci 38:1

    Article  CAS  Google Scholar 

  27. Du P, Liu X, Zheng Z et al (2013) RSC Adv 3:15475

    Article  CAS  Google Scholar 

  28. Feng LB, Yu ZY, Bian YH et al (2018) Constr Build Mater 186:1212

    Article  CAS  Google Scholar 

  29. Zhong Y, Wang X, Zheng Z et al (2015) J Appl Polym Sci 132:41944

    Google Scholar 

  30. Fang YL, Li JC, Du XS et al (2018) Polym 158:166

    Article  CAS  Google Scholar 

  31. Fang YL, Du XS, Du ZL et al (2017) J Mater Chem A 5:8010

    Article  CAS  Google Scholar 

  32. FangY L, Du XS, Jiang YX et al (2018) ACS Sustain Chem Eng 6(11):14490

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (Grant No. 51463010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libang Feng.

Ethics declarations

Conflict of interest

The authors claim there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Bian, Y., Chai, C. et al. Effect of Heat-Treatment on Self-healing and Processing Behavior of Thermally Reversible Polyurethanes. J Polym Environ 28, 647–656 (2020). https://doi.org/10.1007/s10924-019-01633-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01633-6

Keywords

Navigation