Skip to main content
Log in

Plasma Polymer Layers with Primary Amino Groups for Immobilization of Nano- and Microparticles

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The assembly of nano- and micro-scale building blocks on surface has been the focus of intense interest in materials science for years. In this work, (3-aminopropyl)triethoxysilane (APTES) carrying one primary amino group was deposited on various substrate surfaces using the plasma polymerization method. The key plasma parameters i.e. pressure and power were varied to obtained the highest density of primary amino groups. The influence of such parameters on the characteristics of deposited layers (e.g. chemical structure, adhesion strength, growth rate, etc.) was systemically investigated using various characterization methods such as XPS, FTIR, ellipsometry and so on. Meanwhile, three types of particles (AuNPs, zeolites and gold@zeolites) with sizes from nano- to submicro-range were synthesized and further used as model building blocks. Subsequently, the prepared particles were deposited onto cyclic olefin copolymer (COC) substrate surfaces, which were pre-functionalized by deposition of the plasma polymer layer using the parameters of pressure = 1.0 mbar and power = 30 W. The results confirmed the formation of membrane structures consisting of highly packed particles on the COC surface, and such immobilized structures showed high stability against flowing water, evidencing the good immobilization ability of deposited APTES layers with amino groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li S, Li J, Dong M, Fan S, Fan W (2019) Strategies to control zeolite particle morphology. Chem Soc Rev 48(3):885–907

    CAS  PubMed  Google Scholar 

  2. Jin D, Li L, Ye G, Ding H, Zhao X, Zhu K, Coppens M-O, Zhou X (2018) Manipulating the mesostructure of silicoaluminophosphate SAPO-11 via tumbling-assisted, oriented assembly crystallization: a pathway to enhance selectivity in hydroisomerization. Catal Sci Technol 8(19):5044–5061

    CAS  Google Scholar 

  3. Amiinu IS, Liu X, Pu Z, Li W, Li Q, Zhang J, Tang H, Zhang H, Mu S (2018) From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn–Air batteries. Adv Funct Mater 28(5):1704638

    Google Scholar 

  4. Yoon KB (2007) Organization of zeolite microcrystals for production of functional materials. Acc Chem Res 40(1):29–40

    CAS  PubMed  Google Scholar 

  5. Hassan N, Cabuil V, Hassan AA (2013) Continuous multistep microfluidic assisted assembly of fluorescent, plasmonic, and magnetic nanostructures. Angew Chem Int Ed 52(7):1994–1997

    CAS  Google Scholar 

  6. Rao X, Tatoulian M, Guyon C, Ruiz EOM, Ognier S, Chu CL, Hassan AA (2019) A comparison study of functional groups (amine vs. thiol) for immobilizing AuNPs on zeolite surface. Nanomaterials 9(7):1034

    Google Scholar 

  7. Agrawal KV, Topuz B, Pham TCT, Nguyen TH, Sauer N, Rangnekar N, Zhang H, Narasimharao K, Basahel SN, Francis LF, Macosko CW, Al-Thabaiti S, Tsapatsis M, Yoon KB (2015) Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers. Adv Mater 27(21):3243–3249

    CAS  PubMed  Google Scholar 

  8. Pham TCT, Nguyen TH, Yoon KB (2013) Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation. Angew Chem Int Ed 52(33):8693–8698

    CAS  Google Scholar 

  9. Huang J, Ding S, Xiao W, Peng Y, Deng S, Zhang N (2015) 3-Aminopropyl-triethoxysilane functionalized graphene oxide: a highly efficient and recyclable catalyst for knoevenagel condensation. Catal Lett 145(4):1000–1007

    CAS  Google Scholar 

  10. BenHaddada M, Blanchard J, Casale S, Krafft J-M, Vallée A, Méthivier C, Boujday S (2013) Optimizing the immobilization of gold nanoparticles on functionalized silicon surfaces: amine- vs thiol-terminated silane. Gold Bull 46(4):335–341

    Google Scholar 

  11. Karaoglu E, Summak MM, Baykal A, Sözeri H, Toprak MS (2013) Synthesis and characterization of catalytically activity Fe3O4–3-aminopropyl-triethoxysilane/Pd nanocomposite. J Inorg Organomet Polym Mater 23(2):409–417

    CAS  Google Scholar 

  12. Plunkett KN, Mohraz A, Haasch RT, Lewis JA, Moore JS (2005) Light-regulated electrostatic interactions in colloidal suspensions. J Am Chem Soc 127(42):14574–14575

    CAS  PubMed  Google Scholar 

  13. Zhang Z, Song L, Dong J, Guo D, Du X, Cao B, Zhang Y, Gu N, Mao X (2013) A promising combo gene delivery system developed from (3-aminopropyl)triethoxysilane-modified iron oxide nanoparticles and cationic polymers. J Nanopart Res 15(5):1–11

    Google Scholar 

  14. Zhang F, Sautter K, Larsen AM, Findley DA, Davis RC, Samha H, Linford MR (2010) Chemical vapor deposition of three aminosilanes on silicon dioxide: surface characterization, stability, effects of silane concentration, and cyanine dye adsorption. Langmuir 26(18):14648–14654

    CAS  PubMed  Google Scholar 

  15. Ftouni J, Penhoat M, Girardon J-S, Addad A, Payen E, Rolando C (2013) Immobilization of gold nanoparticles on fused silica capillary surface for the development of catalytic microreactors. Chem Eng J 227:103–110

    CAS  Google Scholar 

  16. Zhan B-Z, White MA, Lumsden M (2003) Bonding of organic amino, vinyl, and acryl groups to nanometer-sized NaX zeolite crystal surfaces. Langmuir 19(10):4205–4210

    CAS  Google Scholar 

  17. Li H, Zhang J, Zhou X, Lu G, Yin Z, Li G, Wu T, Boey F, Venkatraman SS, Zhang H (2010) Aminosilane micropatterns on hydroxyl-terminated substrates: fabrication and applications. Langmuir 26(8):5603–5609

    CAS  PubMed  Google Scholar 

  18. Qin M, Hou S, Wang L, Feng X, Wang R, Yang Y, Wang C, Yu L, Shao B, Qiao M (2007) Two methods for glass surface modification and their application in protein immobilization. Colloids Surf B 60(2):243–249

    CAS  Google Scholar 

  19. Klug J, Pérez LA, Coronado EA, Lacconi GI (2013) Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES: the role of surface roughness in the AuNPs anchoring kinetics. J Phys Chem C 117(21):11317–11327

    CAS  Google Scholar 

  20. Acres RG, Ellis AV, Alvino J, Lenahan CE, Khodakov DA, Metha GF, Andersson GG (2012) Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces. J Phys Chem C 116(10):6289–6297

    CAS  Google Scholar 

  21. Mo Y, Zhu M, Bai M (2008) Preparation and nano/microtribological properties of perfluorododecanoic acid (PFDA)–3-aminopropyltriethoxysilane (APS) self-assembled dual-layer film deposited on silicon. Colloids Surf A 322(1–3):170–176

    CAS  Google Scholar 

  22. Zhang F, Srinivasan MP (2004) Self-assembled molecular films of aminosilanes and their immobilization capacities. Langmuir 20(6):2309–2314

    CAS  PubMed  Google Scholar 

  23. Volcke C, Gandhiraman RP, Gubala V, Raj J, Cummins T, Fonder G, Nooney RI, Mekhalif Z, Herzog G, Daniels S, Arrigan DWM, Cafolla AA, Williams DE (2010) Reactive amine surfaces for biosensor applications, prepared by plasma-enhanced chemical vapour modification of polyolefin materials. Biosens Bioelectron 25(8):1875–1880

    CAS  PubMed  Google Scholar 

  24. Suhr H (1989) Applications and trends of nonequilibrium plasma chemistry with organic and organometallic compounds. Plasma Chem Plasma Process 9(1):7S–28S

    CAS  Google Scholar 

  25. Gancarz I, Bryjak J, Poźniak G, Tylus W (2003) Plasma modified polymers as a support for enzyme immobilization II. Amines plasma. Eur Polym J 39(11):2217–2224

    CAS  Google Scholar 

  26. Casimiro J, Lepoittevin B, Boisse-Laporte C, Barthés-Labrousse M-G, Jegou P, Brisset F, Roger P (2011) Introduction of primary amino groups on poly(ethylene terephthalate) surfaces by ammonia and a mix of nitrogen and hydrogen plasma. Plasma Chem Plasma Process 32(2):305–323

    Google Scholar 

  27. Asandulesa M, Topala I, Legrand Y-M, Roualdes S, Rouessac V, Harabagiu V (2014) Chemical investigation on various aromatic compounds polymerization in low pressure helium plasma. Plasma Chem Plasma Process 34(5):1219–1232

    CAS  Google Scholar 

  28. Rao X, Guyon C, Ognier S, Silva BD, Chu C, Tatoulian M, Hassan AAJASS (2018) High density gold nanoparticles immobilized on surface via plasma deposited APTES film for decomposing organic compounds in microchannels. Appl Surf Sci 439:272–281

    CAS  Google Scholar 

  29. Alba-Elías F, Sainz-García E, González-Marcos A, Ordieres-Meré J (2013) Tribological behavior of plasma-polymerized aminopropyltriethoxysilane films deposited on thermoplastic elastomers substrates. Thin Solid Films 540:125–134

    Google Scholar 

  30. Gandhiraman RP, Volcke C, Gubala V, Doyle C, Basabe-Desmonts L, Dotzler C, Toney MF, Iacono M, Nooney RI, Daniels S, James B, Williams DE (2010) High efficiency amine functionalization of cycloolefin polymer surfaces for biodiagnostics. J Mater Chem 20(20):4116–4127

    CAS  Google Scholar 

  31. Gubala V, Gandhiraman RP, Volcke C, Doyle C, Coyle C, James B, Daniels S, Williams DE (2010) Functionalization of cycloolefin polymer surfaces by plasma-enhanced chemical vapour deposition: comprehensive characterization and analysis of the contact surface and the bulk of aminosiloxane coatings. Analyst 135(6):1375–1381

    CAS  PubMed  Google Scholar 

  32. Lecoq E, Duday D, Bulou S, Frache G, Hilt F, Maurau R, Choquet P (2013) Plasma polymerization of APTES to elaborate nitrogen containing organosilicon thin films: influence of process parameters and discussion about the growing mechanisms. Plasma Process Polym 10(3):250–261

    CAS  Google Scholar 

  33. Verheyde B, Havermans D, Vanhulsel A (2011) Characterization and tribological behaviour of siloxane-based plasma coatings on HNBR rubber. Plasma Process Polym 8(8):755–762

    CAS  Google Scholar 

  34. Kale KH, Palaskar SS (2012) Plasma enhanced chemical vapor deposition of tetraethylorthosilicate and hexamethyldisiloxane on polyester fabrics under pulsed and continuous wave discharge. J Appl Polym Sci 125(5):3996–4006

    CAS  Google Scholar 

  35. Garzia Trulli M, Claes N, Pype J, Bals S, Baert K, Terryn H, Sardella E, Favia P, Vanhulsel A (2017) Deposition of aminosilane coatings on porous Al2O3 microspheres by means of dielectric barrier discharges. Plasma Process Polym 14(9):1600211

    Google Scholar 

  36. Akovali G, Rzaev ZMO, Mamedov DGJEPJ (1996) Plasma surface modification of polyethylene with organosilicon and organotin monomers. Eur Polym J 32(3):375–383

    CAS  Google Scholar 

  37. Szili EJ, Kumar S, Smart RSC, Voelcker NH (2009) Generation of a stable surface concentration of amino groups on silica coated onto titanium substrates by the plasma enhanced chemical vapour deposition method. Appl Surf Sci 255(15):6846–6850

    CAS  Google Scholar 

  38. Barbarossa V, Contarini S, Zanobi A (1992) Plasma polymerization of allylamine/3-aminopropyltriethoxysilane mixtures: surface nitrogen control. J Appl Polym Sci 44(11):1951–1957

    CAS  Google Scholar 

  39. Bulou S, Lecoq E, Loyer F, Frache G, Fouquet T, Gueye M, Belmonte T, Choquet P (2019) Study of a pulsed post-discharge plasma deposition process of APTES: synthesis of highly organic pp-APTES thin films with NH2 functionalized polysilsesquioxane evidences. Plasma Process Polym 16(4):13

    Google Scholar 

  40. Uznanski P, Glebocki B, Walkiewicz-Pietrzykowska A, Zakrzewska J, Wrobel AM, Balcerzak J, Tyczkowski J (2018) Surface modification of silicon oxycarbide films produced by remote hydrogen microwave plasma chemical vapour deposition from tetramethyldisiloxane precursor. Surf Coat Technol 350:686–698

    CAS  Google Scholar 

  41. Jafari R, Tatoulian M, Morscheidt W, Arefi-Khonsari F (2006) Stable plasma polymerized acrylic acid coating deposited on polyethylene (PE) films in a low frequency discharge (70 kHz). React Funct Polym 66(12):1757–1765

    CAS  Google Scholar 

  42. Xia H, Bai S, Hartmann J, Wang D (2010) Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver(I)-assisted citrate reduction. Langmuir 26(5):3585–3589

    CAS  PubMed  Google Scholar 

  43. Fahmy A, Mohamed T, Schönhals A (2015) Structure of plasma poly(acrylic acid): influence of pressure and dielectric properties. Plasma Chem Plasma Process 35(2):303–320

    CAS  Google Scholar 

  44. Gubala V, Gandhiraman RP, Volcke C, Doyle C, Coyle C, James B, Daniels S, Williams DE (2010) Functionalization of cycloolefin polymer surfaces by plasma-enhanced chemical vapour deposition: comprehensive characterization and analysis of the contact surface and the bulk of aminosiloxane coatings. The Analyst 135(6):1375

    CAS  PubMed  Google Scholar 

  45. Peña-Alonso R, Rubio F, Rubio J, Oteo JL (2007) Study of the hydrolysis and condensation of γ-aminopropyltriethoxysilane by FT-IR spectroscopy. J Mater Sci 42(2):595–603

    Google Scholar 

  46. Kim J, Seidler P, Wan LS, Fill C (2009) Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. J Colloid Interface Sci 329(1):114–119

    CAS  PubMed  Google Scholar 

  47. Qiaosheng P, Olufemi O, Bowlin T, Shantang L, Alvarez JC (2007) On-chip micropatterning of plastic (cylic olefin copolymer, COC) microfluidic channels for the fabrication of biomolecule microarrays using photografting methods. Langmuir 23(3):1577–1583

    Google Scholar 

  48. Kulisch W, Lippmann T, Kassing R (1989) Plasma-enhanced chemical vapour deposition of silicon dioxide using tetraethoxysilane as silicon source. Thin Solid Films 174:57–61

    CAS  Google Scholar 

  49. Gallino E, Massey S, Tatoulian M, Mantovani D (2010) Plasma polymerized allylamine films deposited on 316L stainless steel for cardiovascular stent coatings. Surf Coat Technol 205(7):2461–2468

    CAS  Google Scholar 

  50. Kim J (2011) Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. J Colloid Interface Sci 1062:141–165

    CAS  Google Scholar 

  51. Bhat RR, Genzer J (2007) Tuning the number density of nanoparticles by multivariant tailoring of attachment points on flat substates. Nanotechnology 18(2):25301–25306

    Google Scholar 

  52. Nunes-Pereira J, Lopes AC, Costa CM, Rodrigues LC, Silva MM, Lanceros-Méndez S (2013) Microporous membranes of NaY zeolite/poly(vinylidene fluoride–trifluoroethylene) for Li-ion battery separators. J Electroanal Chem 689(2):223–232

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from National Natural Science Foundation of China (Grant 51801164) and France’s “Agence Nationale de la Recherche” (ANR) under the grant MicroCat. Besides, this work is jointly supported by the Fundamental Research Funds for the Central Universities (Grants XDJK2018C001, SWU117009) and Venture and Innovation Support Program for Chongqing Overseas Returnees (Grant cx2018080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Rao or Michaël Tatoulian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, X., Abou Hassan, A., Guyon, C. et al. Plasma Polymer Layers with Primary Amino Groups for Immobilization of Nano- and Microparticles. Plasma Chem Plasma Process 40, 589–606 (2020). https://doi.org/10.1007/s11090-019-10056-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10056-z

Keywords

Navigation