Skip to main content

Advertisement

Log in

Thermal Expansion Behavior of Poly(amide-imide) Films with Ultrahigh Tensile Strength and Ultralow CTE

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A series of novel poly(amide-imide) (PAI) films with different amide contents were prepared from pyromellitic dianhydride and four amide-containing diamines. These PAI films exhibited excellent mechanical and thermal properties with tensile strength of 203.7–297.4 MPa and Tg above 407 °C. The rigid backbone structures combined with strong intermolecular interactions provided PAI films with ultralow in-plane CTE values from −4.17 ppm/°C to −0.39 ppm/°C in the temperature range of 30–300 °C. The correlation between thermal expansion behavior and aggregation structures of PAI film was investigated. The results suggested that hydrogen bonding interactions could be maintained even at high temperature, thus resulting in good dimension reversibility of films in multiple heating-cooling cycles. It is demonstrated that dimensional stabilities of PAI films are determined by the rigidity, orientation, and packing of molecular chains. Heat-resistant PAI films with ultralow CTE can be developed as flexible substrates by regulating backbones and aggregation structures for optoelectronic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ji, D. Y.; Li, T.; Hu, W. P.; Fuchs, H. Recent progress in aromatic polyimide dielectrics for organic electronic devices and circuits. Adv. Mater.2019, 31, 1–19.

    Google Scholar 

  2. Zhang, Q.; Tsai, C. Y.; Li, L. J.; Liaw, D. J. Colorless-to-colorful switching electrochromic polyimides with very high contrast ratio. Nat. Commun.2019, 10, 1–8.

    Article  CAS  Google Scholar 

  3. Liu, H.; Zhai, L.; Bai, L.; He, M. H.; Wang, C. G.; Mo, S.; Fan, L. Synthesis and characterization of optically transparent semi-aromatic polyimide films with low fluorine content. Polymer2019, 163, 106–114.

    Article  CAS  Google Scholar 

  4. Cai, W. A.; Cai, J. W.; Niu, H. J.; Xiao, T. D.; Bai, X. D.; Wang, C.; Zhang, Y. H.; Wang, W. Synthesis and electrochromic properties of polyimides with pendent benzimidazole and triphenylamine units. Chinese J. Polym. Sci.2016, 34, 1091–1102.

    Article  CAS  Google Scholar 

  5. Zhuang, Y. B.; Seong, J. G.; Lee, Y. M Polyimides containing aliphatic/alicyclic segments in the main chains. Prog. Polym. Sci.2019, 92, 35–88.

    Article  CAS  Google Scholar 

  6. Zhang, G. D.; Fan, L.; Bai, L.; He, M. H.; Zhai, L.; Mo, S. Mesoscopic simulation assistant design of immiscible polyimide/BN blend films with enhanced thermal conductivity. Chinese J. Polym. Sci.2018, 36, 1394–1402.

    Article  CAS  Google Scholar 

  7. Liu, Y. W.; Tang, L. S.; Qu, L. J.; Liu, S. W.; Chi, Z. G.; Zhang, Y.; Xu, J. R Synthesis and properties of high performance functional polyimides containing rigid nonplanar conjugated fluorene moieties. Chinese J. Polym. Sci.2019, 37, 416–427.

    Article  CAS  Google Scholar 

  8. Tsai, C. L.; Yen, H. J.; Liou, G. S Highly transparent polyimide hybrids for optoelectronic applications. React. Funct. Polym.2016, 108, 2–30.

    Article  CAS  Google Scholar 

  9. Hasegawa, M. Development of solution-pocessable, optically transparent polyimides with ultra-low linear coefficients of thermal expansion. Polymers2017, 9, 1–31.

    Article  CAS  Google Scholar 

  10. Wang, S.; Yang, G. J.; Wu, S. B.; Ren, G.; Yang, W.; Liu, X. K Preparation of solution-processable colorless polyamide-imides with extremely low thermal expansion coefficients through an in-situ silylation method for potential space optical applications. e-Polymers2016, 16, 395–402.

    Article  CAS  Google Scholar 

  11. Wang, Z. H.; Chen, X.; Yang, H. X.; Zhao, J.; Yang, S. Y The in-plane orientation and thermal mechanical properties of the chemically imidized polyimide films. Chinese J. Polym. Sci.2019, 37, 268–278.

    Article  CAS  Google Scholar 

  12. Hasegawa, M.; Kaneki, T.; Tsukui, M.; Okubo, N.; Ishii, J. High-temperature polymers overcoming the trade-off between excellent thermoplasticity and low thermal expansion properties. Polymer2016, 99, 292–306.

    Article  CAS  Google Scholar 

  13. Bae, W. J.; Kovalev, M. K.; Kalinina, F.; Kim, M.; Cho, C. Towards colorless polyimide/silica hybrids for flexible substrates. Polymer2016, 105, 124–132.

    Article  CAS  Google Scholar 

  14. Hasegawa, M.; Tokunaga, R.; Hashimoto, K.; Ishii, J. Crosslinkable polyimides obtained from a reactive diamine and the effect of crosslinking on the thermal properties. React. Funct. Polym.2019, 139, 181–188.

    Article  CAS  Google Scholar 

  15. Sekiguchi, K.; Takizawa, K.; Ando, S. Thermal expansion behavior of the ordered domain in polyimide films investigated by variable temperature WAXD measurements. J. Photopolym. Sci. Technol.2013, 26, 327–332.

    Article  CAS  Google Scholar 

  16. Ando, S.; Harada, M.; Okada, T.; Ishige, R. Effective reduction of volumetric thermal expansion of aromatic polyimide films by incorporating interchain crosslinking. Polymers2018, 10, 1–14.

    Article  CAS  Google Scholar 

  17. Lian, M.; Lu, X. M.; Lu, Q. H Synthesis of superheat-resistant polyimides with high Tg and low coefficient of thermal expansion by introduction of strong intermolecular interaction. Macromolecules2018, 51, 10127–10135.

    Article  CAS  Google Scholar 

  18. Kim S. D.; Lee, B.; Byun, T.; Chung, I. S.; Park, J.; Shin, I.; Ahn, N. Y.; Seo, M.; Lee, Y.; Kim, Y.; Kim, W. Y.; Kwon, H.; Moon, H.; Yoo, S.; Kim, S. Y. Poly(amide-imide) materials for transparent and flexible displays. Sci. Adv.2018, 4, 1–10.

    Google Scholar 

  19. Bai, L.; Zhai, L.; He, M. H.; Wang, C. G.; Mo, S.; Fan, L. Preparation of heat-resistant poly(amide-imide) films with ultralow coefficients of thermal expansion for optoelectronic application. React. Funct. Polym.2019, 141, 155–164.

    Article  CAS  Google Scholar 

  20. Numata, S.; Oohara, S.; Fujisaki, K.; Imaizumi, J.; Kinjo, N. Thermal expansion behavior of various aromatic polyimides. J. Appl. Polym. Sci.1986, 31, 101–110.

    Article  CAS  Google Scholar 

  21. Numata, S.; Fujisaki, K.; Kinjo, N. Re-examination of the relationship between packing coefficient and thermal expansion coefficent for aromatic polyimides. Polymer1987, 28, 2282–2288.

    Article  CAS  Google Scholar 

  22. Numata, S.; Miwa, T. Thermal expansion coefficients and moduli of uniaxially stretched polyimide films with rigid and flexible molecular chains. Polymer1989, 30, 1170–1174.

    Article  CAS  Google Scholar 

  23. Hasegawa, M.; Tsujimura, Y.; Koseki, K.; Miyazaki, T. Poly(ester imide)s possessing low CTE and low water absorption (II). Effect of substituents. Polym. J.2008, 40, 56–67.

    Article  CAS  Google Scholar 

  24. Hasegawa, M.; Sakamoto, Y.; Tanaka, Y.; Kobayashi, Y. Poly(ester imide)s possessing low coefficients of thermal expansion (CTE) and low water absorption (III). Use of bis(4-aminophenyl)terephthalate and effect of substituents. Eur. Polym. J.2010, 46, 1510–1524.

    Article  CAS  Google Scholar 

  25. Hasegawa, M.; Ishigami, T.; Ishii, J.; Sugiura, K.; Fujii, M. Solution-processable transparent polyimides with low coefficients of thermal expansion and self-orientation behavior induced by solution casting. Eur. Polym. J.2013, 49, 3657–3672.

    Article  CAS  Google Scholar 

  26. Ishige, R.; Masuda, T.; Kozaki, Y.; Fujiwara, E.; Okada, T.; Ando, S. Precise analysis of thermal volume expansion of crystal lattice for fully aromatic crystalline polyimides by X-ray diffraction method: relationship between molecular structure and linear/volumetric thermal expansion. Macromolecules2017, 50, 2112–2123.

    Article  CAS  Google Scholar 

  27. Ishige, R.; Tanaka, K.; Ando, S. In situ analysis of chain orientation behavior in thin film aromatic polyimides by variable temperature pMAIRS during thermal imidization. Macromol. Chem. Phys.2018, 219, 1–13.

    Article  CAS  Google Scholar 

  28. Ando, S.; Sekiguchi, K.; Mizoroki, M.; Okada, T.; Ishige, R. Anisotropic linear and volumetric thermal-expansion behaviors of self-standing polyimide films analyzed by thermomechanical analysis (TMA) and optical interferometry. Macromol. Chem. Phys.2018, 219, 1–10.

    Article  CAS  Google Scholar 

  29. Li, T.; Tashiro, K.; Kobayashi, M.; Tadokoro, H. Thermomechanical and ultrasonic properties of high-modulus aromatic polyamide fibers. Macromolecules1986, 19, 1809–1814.

    Article  Google Scholar 

  30. Zhuang, Y. B.; Liu, X. Y.; Gu, Y. Molecular packing and properties of poly(benzoxazole-benzimidazole-imide) copolymers. Polym. Chem.2012, 3, 1517–1525.

    Article  CAS  Google Scholar 

  31. Song, G. L.; Zhang, X. D.; Wang, D. M.; Zhao, X. G.; Zhou, H. W.; Chen, C. H.; Dang, G. D Negative in-plane CTE of benzimidazole-based polyimide film and its thermal expansion behavior. Polymer2014, 55, 3242–3246.

    Article  CAS  Google Scholar 

  32. Song, G. L.; Wang, D. M.; Dang, G. D.; Zhou, H. W.; Chen, C. H.; Zhao, X. G Thermal expansion behavior of polyimide films containing benzoxazole unit. High Perform. Polym.2014, 26, 413–419.

    Article  CAS  Google Scholar 

  33. Hasegawa, M.; Hoshino, Y.; Katsura, N.; Ishii, J. Superheat-resistant polymers with low coefficients of thermal expansion. Polymer2017, 111, 91–102.

    Article  CAS  Google Scholar 

  34. Hasegawa, M.; Watanabe, Y.; Tsukuda, S.; Ishii, J. Solution-processable colorless polyimides with ultralow coefficients of thermal expansion for optoelectronic applications. Polym. Int.2016, 65, 1063–1073.

    Article  CAS  Google Scholar 

  35. Parveen, A. S.; Thirukumaran, P.; Sarojadevi, M. Fabrication of highly durable hydrophobic PBZ/SiO2 surfaces. RSC Adv.2015, 5, 43601–43610.

    Article  CAS  Google Scholar 

  36. Yoshioka, Y.; Tashiro, K. Structural change in the Brill transition of Nylon m/n (1) Nylon 10/10 and its model compounds. Polymer2003, 44, 7007–7019.

    Article  CAS  Google Scholar 

  37. Ishii, J.; Takata, A.; Oami, Y.; Yokota, R.; Vladimirov, L.; Hasegawa, M. Spontaneous molecular orientation of polyimides induced by thermal imidization (6). Mechanism of negative in-plane CTE generation in non-stretched polyimide films. Eur. Polym. J.2010, 46, 681–693.

    Article  CAS  Google Scholar 

  38. Hu, J. H.; Li, R. K.; Chen, C.; Lu, Z.; Zeng, K.; Yang, G. New insights into mechanism of negative in-plane CTE based on bio-based adenine-containing polyimide film. Polymer2018, 146, 133–141.

    Article  CAS  Google Scholar 

  39. Matsuda, S. I.; Ando, S. J Molecular orientation of rigid-rod polyimide films characterized by polarized attenuated total reflection/Fourier transform infrared spectroscopy. J. Polym. Sci., Part B: Polym. Phys.2003, 41, 418–428.

    Article  CAS  Google Scholar 

  40. Wang, L. L.; Dong, X.; Huang, M. M.; Wang, D. J Transient microstructure in long alkane segment polyamide: Deformation mechanism and its temperature dependence. Polymer2016, 97, 217–225.

    Article  CAS  Google Scholar 

  41. Ree, M.; Kim, K.; Woo, S. H.; Chang, H. Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities. J. Appl. Phys.1997, 81, 698–708.

    Article  CAS  Google Scholar 

  42. Ree, M.; Shin, T. J.; Lee, S. W Fully rod-like aromatic polyimides: Structure, properties, and chemical modifications. Korea Polym. J.2001, 9, 1–19.

    CAS  Google Scholar 

  43. Takizawa, K.; Wakita, J.; Azami, S.; Ando, S. Relationship between molecular aggregation structures and optical properties of polyimide films analyzed by synchrotron wide-angle X-ray diffraction, infrared absorption, and UV/visible absorption spectroscopy at very high pressure. Macromolecules2011, 44, 349–359.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51803221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhai.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Zhai, L., He, MH. et al. Thermal Expansion Behavior of Poly(amide-imide) Films with Ultrahigh Tensile Strength and Ultralow CTE. Chin J Polym Sci 38, 748–758 (2020). https://doi.org/10.1007/s10118-020-2366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2366-1

Keywords

Navigation