Skip to main content

Advertisement

Log in

Side Chain Engineering of Sulfonated Poly(arylene ether)s for Proton Exchange Membranes

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Proton conductivity of proton exchange membranes (PEMs) strongly relies on microscopic morphology, which can be modulated by engineering the distribution of ionic groups. Herein, poly(arylene ether)s with densely distributed allyl functionalities are polymerized from a tetra-allyl bisphenol A monomer. The subsequent thiol-ene addition with sodium 3-mercapto-1-propanesulfonate yields comb-shaped sulfonated fluorinated poly(arylene ether)s (SFPAEs) with ion exchange capacities (IECs) ranging from 1.29 mmol·g−1 to 1.78 mmol·g−1. These SFPAEs exhibit superior proton conductivity over the whole temperature range, which is attributed to the enhanced hydrophilic/hydrophobic phase separation as evidenced by small angle X-ray scattering characterizations. The SFPAE-4-40 with an IEC of 1.78 mmol·g−1 shows the largest proton conductivity of 93 mS·cm−1 at room temperature under fully hydrated condition, higher than that of Nafion 212. Furthermore, the vanadium redox flow battery (VRFB) assembled with SFPAE-4-40 separator exhibits higher energy efficiency than the VRFB assembled with Nafion 212.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. He, G. W.; Li, Z.; Zhao, J.; Wang, S. F.; Wu, H.; Guiver, M. D.; Jiang, Z. Y. Nanostructured ion-exchange membranes for fuel cells: recent advances and perspectives. Adv. Mater.2015, 27, 5280–5295.

    PubMed  CAS  Google Scholar 

  2. Wang, L. M.; Zhang, Q. F.; Zhang, S. B. A facile method for preparation of cardo poly(aryl ether sulfone) bearing pendent sulfoalkyl groups as proton exchange membranes. Chinese J. Polym. Sci.2015, 33, 1225–1233.

    CAS  Google Scholar 

  3. Bakonyi, P.; Koók, L.; Kumar, G.; Tóth, G.; Rózsenberszki, T.; Nguyen, D. D.; Chang, S. W.; Zhen, G. Y.; Bélafi-Bakó, K.; Nemestóthy, N. Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: a comprehensive update on recent progress and future prospects. J. Membr. Sci.2018, 564, 508–522.

    CAS  Google Scholar 

  4. Li, X. F.; Zhang, H. M.; Mai, Z. S.; Zhang, H. Z.; Vankelecom, I. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ. Sci.2011, 4, 1147–1160.

    CAS  Google Scholar 

  5. Bauer, I.; Thieme, S.; Brückner, J.; Althues, H.; Kaskel, S. Reduced polysulfide shuttle in lithium-sulfur batteries using Nafion-based separators. J. Power Sources2014, 251, 417–422.

    CAS  Google Scholar 

  6. Hickner, M. A.; Ghassemi, H.; Yu, S. K.; Einsla, B. R.; McGrath, J. E. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev.2004, 104, 4587–4611.

    PubMed  CAS  Google Scholar 

  7. Kreuer, K. D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci.2001, 185, 29–39.

    CAS  Google Scholar 

  8. Shin, D. W.; Guiver, M. D.; Lee, Y. M. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability. Chem. Rev.2017, 117, 4759–4805.

    PubMed  CAS  Google Scholar 

  9. Schmidt-Rohr, K.; Chen, Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nature Mater.2008, 7, 75–83.

    CAS  Google Scholar 

  10. Mauritz, K. A.; Moore, R. B. State of understanding of Nafion. Chem. Rev.2004, 104, 4535–4585.

    PubMed  CAS  Google Scholar 

  11. Jiang, B.; Wu, L. T.; Yu, L. H.; Qiu, X. P.; Xi, J. Y. A comparative study of Nafion series membranes for vanadium redox flow batteries. J. Membr. Sci.2016, 510, 18–26.

    CAS  Google Scholar 

  12. Zakil, F. A.; Kamarudin, S. K.; Basri, S. Modified Nafion membranes for direct alcohol fuel cells: an overview. Renew. Sust. Energy Rev.2016, 65, 841–852.

    CAS  Google Scholar 

  13. Bae, B.; Miyatake, K.; Watanabe, M. Effect of the hydrophobic component on the properties of sulfonated poly(arylene ether sulfone)s. Macromolecules2009, 42, 1873–1880.

    CAS  Google Scholar 

  14. Kim, Y. S.; Hickner, M. A.; Dong, L. M.; Pivovar, B. S.; McGrath, J. E. Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability. J. Membr. Sci.2004, 243, 317–326.

    CAS  Google Scholar 

  15. Cheng, H. L.; Xu, J. M.; Ma, L.; Xu, L. S.; Liu, B. J.; Wang, Z.; Zhang, H. X. Preparation and characterization of sulfonated poly(arylene ether ketone) copolymers with pendant sulfoalkyl groups as proton exchange membranes. J. Power Sources2014, 260, 307–316.

    CAS  Google Scholar 

  16. Anderson, K.; Kingston, E.; Romeo, J.; Doan, J.; Loupe, N.; Dimakis, N.; Smotkin, E. S. Infrared spectroscopy of ion-induced cross-linked sulfonated poly(ether ether ketone). Polymer2016, 93, 65–71.

    CAS  Google Scholar 

  17. Jang, H.; Ryu, T.; Sutradhar, S. C.; Ahmed, F.; Choi, K.; Yang, H.; Yoon, S.; Kim, W. Studies of sulfonated poly(phenylene)-blockpoly( ethersulfone) for proton exchange membrane fuel cell. Int. J. Hydrogen Energy2017, 42, 12768–12776.

    CAS  Google Scholar 

  18. Yan, J. L.; Huang, X. M.; Moore, H. D.; Wang, C. Y.; Hickner, M. A. Transport properties and fuel cell performance of sulfonated poly(imide) proton exchange membranes. Int. J. Hydrogen Energy2012, 37, 6153–6160.

    CAS  Google Scholar 

  19. Li, N. W.; Liu, J.; Cui, Z. M.; Zhang, S. B.; Xing, X. Novel hydrophilichydrophobic multiblock copolyimides as proton exchange membranes: enhancing the proton conductivity. Polymer2009, 50, 4505–4511.

    CAS  Google Scholar 

  20. Suryani; Chang, Y. N.; Lai, J. Y; Liu, Y. L. Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells. J. Membr. Sci.2012, 403-404, 1–7.

    CAS  Google Scholar 

  21. Park, C. H.; Lee, C. H.; Guiver, M. D.; Lee, Y. M. Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Prog. Polym. Sci.2011, 36, 1443–1498.

    CAS  Google Scholar 

  22. Liao, H.; Xiao, G.; Yan, D. High performance proton exchange membranes obtained by adjusting the distribution and content of sulfonic acid side groups. Chem. Commun.2013, 49, 3979–3981.

    CAS  Google Scholar 

  23. Wang, C.; Shin, D. W.; Lee, S. Y.; Kang, N. R.; Lee, Y. M.; Guiver, M. D. Poly(arylene ether sulfone) proton exchange membranes with flexible acid side chains. J. Membr. Sci.2012, 405-406, 68–78.

    CAS  Google Scholar 

  24. Han, X. C.; Xie, Y. J.; Liu, D.; Chen, Z.; Zhang, H. B.; Pang, J. H.; Jiang, Z. H. Synthesis and properties of novel poly(arylene ether)s with densely sulfonated units based on carbazole derivative. J. Membr. Sci.2019, 589, 117230–117237.

    CAS  Google Scholar 

  25. Chen, D. Y.; Wang, S. J.; Xiao, M.; Meng, Y. Z.; Hay, A. S. Novel polyaromatic ionomers with large hydrophilic domain and long hydrophobic chain targeting at highly proton conductive and stable membranes. J. Mater. Chem.2011, 21, 12068–12077.

    CAS  Google Scholar 

  26. Li, G. B.; Zhao, C. J.; Li, X. F.; Qi, D.; Liu, C.; Bu, F. Z.; Na, H. Novel side-chain-type sulfonated diphenyl-based poly(arylene ether sulfone)s with a hydrogenbonded network as proton exchange membranes. Polym. Chem.2015, 6, 5911–5920.

    CAS  Google Scholar 

  27. Yang, S.; Ahn, Y.; Kim, D. Poly(arylene ether ketone) proton exchange membranes grafted with long aliphatic pendant sulfonated groups for vanadium redox flow batteries. J. Mater. Chem. A2017, 5, 2261–2270.

    CAS  Google Scholar 

  28. Nakabayashi, K.; Higashihara, T.; Ueda, M. Polymer electrolyte membranes based on poly(phenylene ether)s with pendant perfluoroalkyl sulfonic acids. Macromolecules2011, 44, 1603–1609.

    CAS  Google Scholar 

  29. Chen, X. L.; Lv, H. X.; Lin, Q. L.; Zhang, X.; Chen, D. Y.; Zheng, Y. Y. Partially fluorinated poly(arylene ether)s bearing long alkyl sulfonate side chains for stable and highly conductive proton exchange membranes. J. Membr. Sci.2018, 549, 12–22.

    CAS  Google Scholar 

  30. Wiedemann, E.; Heintz, A.; Lichtenthaler, R. N. Transport properties of vanadium ions in cation exchange membranes: determination of diffusion coefficients using a dialysis cell. J. Membr. Sci.1998, 141, 215–221.

    CAS  Google Scholar 

  31. Kim, S.; Tighe, T. B.; Schwenzer, B.; Yan, J. L.; Zhang, J. L.; Liu, J.; Yang, Z. G.; Hickner, M. A. Chemical and mechanical degradation of sulfonated poly(sulfone) membranes in vanadium redox flow batteries. J. Appl. Electrochem.2011, 41, 1201–1213.

    CAS  Google Scholar 

  32. Han, J.; Kim, K.; Kim, J.; Kim, S.; Choi, S. W.; Lee, H.; Kim, J. J.; Kim, T. H.; Sung, Y. E.; Lee, J. C. Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application. J. Membr. Sci.2019, 579, 70–78.

    CAS  Google Scholar 

  33. Chang, M. Y.; Lee, T. W.; Wu, M. H. Polyphosphoric acid promoted synthesis of 10,11-dihydrobenzo[j]fluoranthen-12-one. Org. Lett.2012, 14, 2198–2201.

    PubMed  CAS  Google Scholar 

  34. Chen, D. Y.; Kim, S.; Li, L.; Yang, G.; Hickner, M. A. Stable fluorinated sulfonated poly(arylene ether) membranes for vanadium redox flow batteries. RSC Adv.2012, 2, 8087–8094.

    CAS  Google Scholar 

  35. Ding, F. C.; Wang, S. J.; Xiao, M.; Han, D. M.; Meng, Y. Z. Synthesis and characterization of cross-linkable poly(phthalazinone ether ketone)s. J. Appl. Polym. Sci.2007, 106, 1821–1857.

    CAS  Google Scholar 

  36. Xiong, L.; Hu, Y.; Zheng, Z.; Xie, Z.; Chen, D. Chloromethylation and quaternization of poly(aryl ether ketone sulfone)s with clustered electron-rich phenyl groups for anion exchange membranes. Chinese J Polym. Sci.2020, DOI: 10.1007/s10118-020-2340-y.

    Google Scholar 

  37. Chen, Y.; Lin, Q.; Zheng, Y.; Yu, Y.; Chen, D. Densely quaternized anion exchange membranes synthesized from Ullmann coupling extension of ionic segments for vanadium redox flow batteries. Sci. China Mater.2019, 62, 211–224.

    CAS  Google Scholar 

  38. Zhou, L. J.; Zhu, J. Y.; Lin, M. J.; Xu, J. Q.; Xie, Z. L.; Chen, D. Y. Tetra-alkylsulfonate functionalized poly(aryl ether) membranes with nanosized hydrophilic channels for efficient proton conduction. J. Energy Chem.2020, 64, 57–3981.

    Google Scholar 

  39. Xu, J.; Lin, Q.; Yu, Y.; Chen, D.; Ye, Z. Facile synthesis of fluorinated poly(arylene ether)s with pendant sulfonic acid groups for proton exchange membranes. Int. J. Hydrogen Energy2017, 42, 27100–27110.

    CAS  Google Scholar 

  40. Zhang, W.; Chen, S.; Chen, D.; Ye, Z. Sulfonated binaphthylcontaining poly(arylene ether ketone)s with rigid backbone and excellent film-forming capability for proton exchange membranes. Polymers2018, 10, 1287–1300.

    PubMed Central  Google Scholar 

  41. Wang, C.; Shen, B.; Dong, H.; Chen, W.; Xu, C.; Li, J.; Ren, Q. Sulfonated poly(aryl sulfide sulfone)s containing trisulfonated triphenylphosphine oxide moieties for proton exchange membrane. Electrochim. Acta2015, 177, 145–150.

    CAS  Google Scholar 

  42. Feng, S.; Pang, J.; Yu, X.; Wang, G.; Manthiram, A. Highperformance semicrystalline poly(ether ketone)-based proton exchange membrane. ACS Appl. Mater. Interfaces2017, 9, 24527–24537.

    PubMed  CAS  Google Scholar 

  43. Wang, C.; Shin, D. W.; Lee, S. Y.; Kang, N. R.; Robertson, G. P.; Lee, Y. M.; Guiver, M. D. A clustered sulfonated poly(ether sulfone) based on a new fluorene-based bisphenol monomer. J. Mater. Chem.2012, 22, 25093–25101.

    CAS  Google Scholar 

  44. Wang, C.; Li, N.; Shin, D. W.; Lee, S. Y.; Kang, N. R.; Lee, Y. M.; Guiver, M. D. Fluorene-based poly(arylene ether sulfone)s containing clustered flexible pendant sulfonic acids as proton exchange membranes. Macromolecules2011, 44, 7296–7306.

    CAS  Google Scholar 

  45. Hu, H.; Liu, W.; Yang, L.; Xiao, M.; Wang, S.; Han, D.; Meng, Y. Sulfonated poly(fluorenyl ether ketone) ionomers containing aliphatic functional segments for fuel cell applications. Int. J. Hydrogen Energy2012, 37, 4553–4562.

    CAS  Google Scholar 

  46. Chen, D.; Wang, S.; Xiao, M.; Han, D.; Meng, Y. Synthesis of sulfonated poly(fluorenyl ether thioether ketone)s with bulkyblock structure and its application in vanadium redox flow battery. Polymer2011, 52, 5312–5319.

    CAS  Google Scholar 

  47. Zhang, Y.; Zhou, X. J.; Xue, R.; Yu, Q. C.; Jiang, F. J.; Zhong, Y. G. Proton exchange membranes with ultra-low vanadium ions permeability improved by sulfated zirconia for all vanadium redox flow battery. Int. J. Hydrogen Energy2019, 44, 5997–6006.

    CAS  Google Scholar 

  48. Chen, F.; Lin, F.; Zhang, Q.; Cai, R.; Wu, Y. D.; Ma, X. Y. Polyhedral oligomeric silsesquioxane hybrid polymers: well-defined architectural design and potential functional applications. Macromol. Rapid Commun2019, 40, 1900101.

    Google Scholar 

  49. Chen, L. Y.; Zhang, S. H.; Chen, Y. N.; Jian, X. G. Low vanadium ion permeabilities of sulfonated poly(phthalazinone ether ketone)s provide high efficiency and stability for vanadium redox flow batteries. J. Power Sources2017, 355, 23–30.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51873037 and 51503038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Yang Chen or Yu-Ying Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, ZW., Chen, XL. et al. Side Chain Engineering of Sulfonated Poly(arylene ether)s for Proton Exchange Membranes. Chin J Polym Sci 38, 644–652 (2020). https://doi.org/10.1007/s10118-020-2371-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2371-4

Keywords

Navigation