Skip to main content
Log in

Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Novel PdCoAg/C nanostructures were successfully synthesized by the polyol method in order to develop electrocatalysts, related to the glucose sensor performance of the high glycemic index in beverages. The characterization of this novel PdCoAg/C electrocatalyst was performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy equipped with energy dispersive X-ray. The characterization results revealed that electronic state of the PdCoAg/C electro-catalyst was modified by the addition of the third metal. The electrochemical performances of the sensor were investigated by cyclic voltammetry and differential pulse voltammetry. The prepared enzyme-free sensor exhibited excellent catalytic activity against glucose with a wide detection range (0.005 to 0.35 mmol · L−1), low limit of detection (0.003 mmol · L−1), high sensitivity (4156.34 µA · mmol−1 · L · cm−2), and long-term stability (10 days) because of the synergistic effect between the ternary metals. The glucose contents of several energy drinks, fruit juices, and carbonated beverages were analyzed using the novel PdCoAg/NGCE/C sensor system. These results indicate the feasibility for applications in the foods industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mattheeuws D, Rottiers R, Kaneko J J, Vermeulen A. Diabetes-mellitus in dogs—relationship of obesity to glucose-tolerance and insulin-response. American Journal of Veterinary Research, 1984, 45(1): 98–103

    PubMed  CAS  Google Scholar 

  2. Pawlak D B, Kushner J A, Ludwig D S. Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals. Lancet, 2004, 364(9436): 778–785

    Article  CAS  PubMed  Google Scholar 

  3. Abete I, Parra D, Martinez J A. Energy-restricted diets based on a distinct food selection affecting the glycemic index induce different weight loss and oxidative response. Clinical Nutrition (Edinburgh, Lothian), 2008, 27(4): 545–551

    Article  CAS  Google Scholar 

  4. Salek-Maghsoudi A, Vakhshiteh F, Torabi R, Hassani S, Ganjali M R, Norouzi P, Hosseini M, Abdollahi M. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosensors & Bioelectronics, 2018, 99: 122–135

    Article  CAS  Google Scholar 

  5. Jiang D, Liu Q, Wang K, Qian J, Dong X Y, Yang Z T, Du X J, Qiu B J. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosensors & Bioelectronics, 2014, 54: 273–278

    Article  CAS  Google Scholar 

  6. Shabnam L, Faisal S N, Roy A K, Haque E, Minett A I, Gomes V G. Doped graphene/Cu nanocomposite: A high sensitivity non-enzymatic glucose sensor for food. Food Chemistry, 2017, 221: 751–759

    Article  CAS  PubMed  Google Scholar 

  7. Si P, Huang Y J, Wang T H, Ma J M. Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Advances, 2013, 3(11): 3487–3502

    Article  CAS  Google Scholar 

  8. Dai X L, Deng W Q, You C, Shen Z, Xiong X L, Sun X P A. Ni3N-Co3N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection. Analytical Methods, 2018, 10(15): 1680–1684

    Article  CAS  Google Scholar 

  9. Wang Z, Cao X Q, Liu D N, Hao S, Kong R M, Du G, Asiri A M, Sun X P. Copper-nitride nanowires array: An efficient dual-functional catalyst electrode for sensitive and selective non-enzymatic glucose andhydrogen peroxide sensing. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(21): 4986–1989

    CAS  Google Scholar 

  10. Xie F Y, Cao X Q, Qu F L, Asiri A M, Sun X P. Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sensors and Actuators. B, Chemical, 2018, 255: 1254–1261

    CAS  Google Scholar 

  11. Tian L H, Liu L, Li Y Y, Feng X, Wei Q, Cao W. A novel label-free electrochemical immunosensor for the detection of hepatitis B surface antigen. Analytical Methods, 2016, 8(40): 7380–7386

    Article  CAS  Google Scholar 

  12. Kazici H C, Salman F, Caglar A, Kivrak H, Aktas N. Synthesis, characterization, and voltammetric hydrogen peroxide sensing on novel monometallic (Ag, Co/MWCNT) and bimetallic (AgCo/MWCNT) alloy nanoparticles. Fullerenes, Nanotubes, and Carbon Nanostructures, 2018, 26(3): 145–151

    Article  CAS  Google Scholar 

  13. Afraz A, Rafati A A, Hajian A. Analytical sensing of hydrogen peroxide on Ag nanoparticles-multiwalled carbon nanotube-modified glassy carbon electrode. Journal of Solid State Electrochemistry, 2013, 17(7): 2017–2025

    Article  CAS  Google Scholar 

  14. Sahin O, Kivrak H, Kivrak A, Kazici H C, Alal O, Atbas D. Facile and rapid synthesis of microwave assisted Pd nanoparticles as non-enzymatic hydrogen peroxide sensor. International Journal of Electrochemical Science, 2017, 12(1): 762–769

    Article  CAS  Google Scholar 

  15. Kivrak H, Alal O, Atbas D. Efficient and rapid microwave-assisted route to synthesize Pt-MnOx hydrogen peroxide sensor. Electrochimica Acta, 2015, 176: 497–503

    Article  CAS  Google Scholar 

  16. Guler M, Turkoglu V, Bulut A, Zahmakiran M. Electrochemical sensing of hydrogen peroxide using Pd@Ag bimetallic nanoparticles decorated functionalized reduced graphene oxide. Electrochimica Acta, 2018, 263: 118–126

    Article  CAS  Google Scholar 

  17. Yang J W, Liang X Y, Cui L, Liu H Y, Xie J B, Liu W X. A novel non-enzymatic glucose sensor based on Pt3Ru1 alloy nanoparticles with high density of surface defects. Biosensors & Bioelectronics, 2016, 80: 171–174

    Article  CAS  Google Scholar 

  18. Li L H, Zhang W D, Ye J S. Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalysis, 2008, 20(20): 2212–2216

    Article  CAS  Google Scholar 

  19. Ryu J, Kim K, Kim H S, Hahn H T, Lashmore D. Intense pulsed light induced platinum-gold alloy formation on carbon nanotubes for non-enzymatic glucose detection. Biosensors & Bioelectronics, 2010, 26(2): 602–607

    Article  CAS  Google Scholar 

  20. Singh B, Dempsey E, Laffir F. Carbon nanochips and nanotubes decorated PtAuPd-based nanocomposites for glucose sensing: Role of support material and efficient Pt utilisation. Sensors and Actuators. B, Chemical, 2014, 205: 401–410

    Article  CAS  Google Scholar 

  21. Oyama M, Chen X M, Chen X. Recent nanoarchitectures in metal nanoparticle-graphene nanocomposite modified electrodes for electroanalysis. Analytical Sciences, 2014, 30(5): 529–538

    Article  CAS  PubMed  Google Scholar 

  22. Galvis-Sanchez A C, Santos J R, Rangel A. Standard addition flow method for potentiometric measurements at low concentration levels: Application to the determination of fluoride in food samples. Talanta, 2015, 133(Supp): 1–6

    Article  CAS  PubMed  Google Scholar 

  23. Rousset J L, Bertolini J C, Miegge P. Theory of segregation using the equivalent-medium approximation and bond-strength modifications at surfaces: Application to fee Pd-X alloys. Physical Review. B, 1996, 53(8): 4947–4957

    Article  CAS  Google Scholar 

  24. Liu C H, Liu R H, Sun Q J, Chang J B, Gao X, Liu Y, Lee S T, Kang Z H, Wang S D. Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties. Nanoscale, 2015, 7(14): 6356–6362

    Article  CAS  PubMed  Google Scholar 

  25. Han Y, Zheng J B, Dong S Y. A novel nonenzymatic hydrogen peroxide sensor based on Ag-MnO2-MWCNTs nanocomposites. Electrochimica Acta, 2013, 90: 35–43

    Article  CAS  Google Scholar 

  26. Wu G H, Song X H, Wu Y F, Chen X M, Luo F, Chen X. Non-enzymatic electrochemical glucose sensor based on platinum nanoflowers supported on graphene oxide. Talanta, 2013, 105: 379–385

    Article  CAS  PubMed  Google Scholar 

  27. Zhuang Z J, Su X D, Yuan H Y, Sun Q, Xiao D, Choi M M F. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst (London), 2008, 133(1): 126–132

    Article  CAS  Google Scholar 

  28. Zhang X J, Wang G F, Zhang W, Wei Y, Fang B. Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosensors & Bioelectronics, 2009, 24(11): 3395–3398

    Article  CAS  Google Scholar 

  29. Yu H, Jian X, Jin J, Zheng X C, Liu R T, Qi G C. Nonenzymatic sensing of glucose using a carbon ceramic electrode modified with a composite film made from copper oxide, overoxidized polypyrrole and multi-walled carbon nanotubes. Microchimica Acta, 2015, 182(1–2): 157–165

    Article  CAS  Google Scholar 

  30. Kang X H, Mai Z B, Zou X Y, Cai P X, Mo J Y. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nano tube-modified glassy carbon electrode. Analytical Biochemistry, 2007, 363(1): 143–150

    Article  CAS  PubMed  Google Scholar 

  31. Zhong G X, Zhang W X, Sun Y M, Wei Y Q, Lei Y, Peng H P, Liu A L, Chen Y Z, Lin X H. A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode. Sensors and Actuators. B, Chemical, 2015, 212: 72–77

    CAS  Google Scholar 

  32. Song J, Xu L, Zhou C Y, Xing R Q, Dai Q L, Liu D L, Song H W. Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. ACS Applied Materials & Interfaces, 2013, 5(24): 12928–12934

    Article  CAS  Google Scholar 

  33. Gao H C, Xiao F, Ching C B, Duan H W. One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for none-nzynnatic amperometric glucose detection. ACS Applied Materials & Interfaces, 2011, 3(8): 3049–3057

    Article  CAS  Google Scholar 

  34. Wang C X, Yin L W, Zhang L Y, Gao R. Ti/TiO2 Nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. Journal of Physical Chemistry C, 2010, 114(10): 4408–4413

    Article  CAS  Google Scholar 

  35. Liotta L F, Puleo F, La Parola V, Leonardi S G, Donato N, Aloisio D, Neri G. La0.6Sr0.4FeO3-delta and La0.6Sr0.4Co0.2Fe0.8O3-delta perovskite materials for H2O2 and glucose electrochemical sensors. Electroanalysis, 2015, 27(3): 684–692

    Article  CAS  Google Scholar 

  36. Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosensors & Bioelectronics, 2010, 25(5): 1070–1074

    Article  CAS  Google Scholar 

  37. Li X L, Yao J Y, Liu F L, He H C, Zhou M, Mao N, Xiao P, Zhang Y H. Nickel/copper nanoparticles modified TiO2 nanotubes for nonenzymatic glucose biosensors. Sensors and Actuators. B, Chemical, 2013, 181: 501–508

    Article  CAS  Google Scholar 

  38. Niu X H, Lan M B, Chen C, Zhao H L. Nonenzymatic electrochemical glucose sensor based on novel Pt-Pd nanoflakes. Talanta, 2012, 99: 1062–1067

    Article  CAS  PubMed  Google Scholar 

  39. Moller M, Over H, Smarsly B, Tarabanko N, Urban S. Electrospun ceria-based nanofibers for the facile assessment of catalyst morphological stability under harsh HCl oxidation reaction conditions. Catalysis Today, 2015, 253: 207–218

    Article  CAS  Google Scholar 

  40. Anari R, Amani R, Veissi M. Sugar-sweetened beverages consumption is associated with abdominal obesity risk in diabetic patients. Diabetes & Metabolic Syndrome, 2017, 11: 675–678

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Van Yüzüncü Yıl University Scientific Research Projects Coordination Unit of Turkey (BAP) project (Project No: FYL-2018-6896).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilal C. Kazici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, F., Kazici, H.C. & Kivrak, H. Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages. Front. Chem. Sci. Eng. 14, 629–638 (2020). https://doi.org/10.1007/s11705-019-1840-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1840-1

Keywords

Navigation