Skip to main content
Log in

Spatially confined growth of Bi2O4 into hierarchical TiO2 spheres for improved visible light photocatalytic activity

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bi2O4 is a promising visible light responsive photocatalyst but its application is limited by the large particle size and fast recombination rate of charge carriers. Herein, the flower-like hierarchical TiO2 sphere with rich mesorpores and macropores was used as the framework for the space-confined growth of nanosized Bi2O4, creating enormous Bi2O4/TiO2 type II heterojunctions and enlarging the interfacial contract areas between Bi2O4 and TiO2. Benefitting from these outstanding features, the photocatalytic activity of Bi2O4/TiO2 heterojunction for the degradation of methyl orange is much higher than that of pure Bi2O4 under visible light. The greatly improved separation efficiency of charge carriers that derived from the heterojunction and the shortened transfer distance of photogenerated charges from interior to surface of nanoscaled Bi2O4 are responsible for the enhanced photocatalytic performance. In addition, radical capture experimental results imply that hole is the dominant reactive species for the degradation of methyl orange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kubacka A, Marcos FG, Gerardo C (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614

    Article  CAS  Google Scholar 

  2. Song LX, Jing WR, Chen JJ, Zhang SR, Zhu YQ, Xiong J (2019) High reusability and durability of carbon-doped TiO2/carbon nanofibrous film as visible-light-driven photocatalyst. J Mater Sci 54:3795–3804. https://doi.org/10.1007/s10853-018-3105-7

    Article  CAS  Google Scholar 

  3. Shao J, Sheng WC, Wang MS, Li SJ, Chen JR, Zhang Y, Cao SS (2017) In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency. Appl Catal B, Environ, pp 209311–209319

    Google Scholar 

  4. Du YB, Xu XY, Lin L, Ge MY, He DN (2018) 3D hierarchical flower-like rutile TiO2 nanospheres based versatile photocatalyst. J Mater Sci 53:385–395. https://doi.org/10.1007/s10853-017-1498-3

    Article  CAS  Google Scholar 

  5. Kako T, Zou ZG, Katagiri M, Ye JH (2007) Decomposition of organic compounds over NaBiO3 under visible light irradiation. Chem Mater 19:198–202

    Article  CAS  Google Scholar 

  6. Ni SN, Zhou TT, Zhang HN, Cao YQ, Yang P (2018) BiOI/BiVO4 Two-Dimensional heteronanostructures for visible-light photocatalytic degradation of rhodamine B. ACS Appl Nano Mater 1:5128–5141

    Article  CAS  Google Scholar 

  7. Qiu YF, Yang ML, Fan HB, Zuo YZ, Shao YY, Xu YJ, Yang XX, Yang SH (2011) Nanowires of α- and β-Bi2O3: phase-selective synthesis and application in photocatalysis. CrystEngComm 13:1843–1850

    Article  CAS  Google Scholar 

  8. Mohamed RM, MkhalidI A, Shawky A (2019) Facile synthesis of Pt-In2O3/BiVO4 nanospheres with improved visible-light photocatalytic activity. J Alloy Compd 775:542–548

    Article  CAS  Google Scholar 

  9. Wang WJ, Chen XQ, Liu G, Shen ZR, Xia DH, Wong PK, Yu JC (2015) Monoclinic dibismuthtetraoxide: a new visible-light-driven photocatalyst for environmental remediation. Appl Catal B Environ 176–177:444–453

    Article  Google Scholar 

  10. Hu Y, Li DZ, Sun FQ, Weng YQ, You SY, Shao Y (2016) Temperature-induced phase changes in bismuth oxides and efficient photodegradation of phenol and p-chlorophenol. J Hazard Mater 301:362–370

    Article  CAS  Google Scholar 

  11. Hameed A, Aslam M, Ismail IMI, Salah N, Fornasiero P (2015) Sunlight induced formation of surface Bi2O4−x–Bi2O3 nanocomposite during the photocatalytic mineralization of 2-chloro and 2-nitrophenol. Appl Catal B Environ 163:444–451

    Article  CAS  Google Scholar 

  12. Low JX, Yu JG, Jaronie M, Wageh S, Al-Ghamdi AA (2017) Heterojunction photocatalysts. Adv Mater 29:601–694

    Article  Google Scholar 

  13. Xia DH, Wang WJ, Yin R, Jiang ZF, An TC, Li GY, Zhao HJ, Wong PK (2017) Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: the role of reactive oxygen species. Appl Catal B Environ 214:23–33

    Article  CAS  Google Scholar 

  14. Wang HY, Liu ZS, Zhao YL, Niu JN, Feng PZ (2017) Enhanced photocatalytic activity and photostability for novel g-C3N4 decorated Bi2O4 microrod composites. Mater Res Bull 89:253–262

    Article  CAS  Google Scholar 

  15. Sun M, Li SL, Yan T, Ji PG, Zhao X, Yuan K, Wei D, Du B (2017) Fabrication of heterostructured Bi2O2CO3/Bi2O4 photocatalyst and efficient photodegradation of organic contaminants under visible-light. J Hazard Mater 333:169–178

    Article  CAS  Google Scholar 

  16. Xia DH, Lo IMC (2016) Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation. Water Res 100:393–404

    Article  CAS  Google Scholar 

  17. Li XY, Zhang CQ, Hu CY, Xu LC, Hu QH, Duo SW, Li WK, Kang YF (2017) Synthesis of Bi2O4@TiO2 heterojunction with enhanced visible light photocatalytic activity. J Clust Sci 28:2409–2418

    Article  CAS  Google Scholar 

  18. Zhang CQ, Li XY, Zheng SZ, Ma YY, Hu CY, Li CY, Duo SW, Hu QH (2018) Construction of TiO2 nanobelts-Bi2O4 heterojunction with enhanced visible light photocatalytic activity. Colloids Surf A 548:150–157

    Article  CAS  Google Scholar 

  19. Pan XL, Bao XH (2011) The effects of confinement inside carbon nanotubes on catalysis. Acc Chem Res 44:553–562

    Article  CAS  Google Scholar 

  20. Tang C, Wang HS, Wang HF, Zhang Q, Tian GL, Nie JQ, Wei F (2015) Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped grapheme frameworks leading to superior oxygen evolution reactivity. Adv Mater 27:4516–4522

    Article  CAS  Google Scholar 

  21. Zhao SD, Chen JR, Liu YF, Jiang Y, Jiang CG, Yin ZL, Xiao YG, Cao SS (2019) Silver nanoparticles confined in shell-in-shell hollow TiO2 manifesting efficiently photocatalytic activity and stability. Chem Eng J 367:249–259

    Article  CAS  Google Scholar 

  22. Lu SL, Hu YM, Wan S, McCaffrey RY, Jin H, Gu HW, Zhang W (2017) Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications. J Am Chem Soc 139:17082–17088

    Article  CAS  Google Scholar 

  23. Zhang CM, Chen G, Li CM, Sun JX, Lv CD, Fan S, Xing WN (2016) In situ fabrication of Bi2WO6/MoS2/RGO heterojunction with nanosized interfacial contact via confined space effect toward enhanced photocatalytic properties. ACS Sustain Chem Eng 4:5936–5942

    Article  CAS  Google Scholar 

  24. Tang YQ, Fang XY, Zhang X, Fernandes G, Yan Y, Yan DP, Xiang X, He J (2017) Space-confined earth-abundant bifunctional electrocatalyst for high-efficiency water splitting. ACS Appl Mater Interfaces 9:36762–36771

    Article  CAS  Google Scholar 

  25. Ma YY, Zhang CQ, Li CY, Qin F, Wei L, Hu CY, Hu QH, Duo SW (2019) Nanoscaled Bi2O4 confined in firework-shaped TiO2 microspheres with enhanced visible light photocatalytic performance. Colloid Surf A 580:123757

    Article  CAS  Google Scholar 

  26. Liao JY, Lei BX, Kuang DB, Su CY (2011) Tri-functional hierarchical TiO2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells. Energy Environ Sci 4:4079–4085

    Article  CAS  Google Scholar 

  27. Lui G, Liao JY, Duan A, Zhang ZS, Fowler M, Yu AP (2013) Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance. J Mater Chem A 1:12255–12262

    Article  CAS  Google Scholar 

  28. Hu CY, Chen F, Lu TW, Lian CJ, Zheng SZ, Hu QH, Duo SW, Zhang RB (2014) Water-phase strategy for synthesis of TiO2-graphene composites with tunable structure for high performance photocatalysts. Appl Surf Sci 317:648–656

    Article  CAS  Google Scholar 

  29. Liu JY, Yan J, Ji HY, Xu YG, Huang LY, Li YP, Song YH, Zhang Q, Xu H, Li HM (2016) Controlled synthesis of ordered mesoporous g-C3N4 with a confined space effect on its photocatalytic activity. Mat Sci Semicond Process 46:59–68

    Article  CAS  Google Scholar 

  30. Singh R, Bapat R, Qin LJ, Feng H, Polshettiwar V (2016) Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect. ACS Catal 6:2770–2784

    Article  CAS  Google Scholar 

  31. Gao L, Cao ML, Fu YQ, Zhong ZC, Shen Y, Wang MK (2016) Hierarchical TiO2 spheres assisted with graphene for a high performance lithium-sulfur battery. J Mater Chem A 4:16454–16461

    Article  CAS  Google Scholar 

  32. Wang SF, Qu DD, Wan YJ, Xiong S, Sang HQ, He RX, Tai QD, Chen BL, Liu YM, Zhao XZ (2016) Three-dimensional branched TiO2architectures in controllable bloom for advanced lithium-ion batteries. ACS Appl Mater Interfaces 8:20040–20047

    Article  CAS  Google Scholar 

  33. Song LH, Li L, Gao X, Zhao JX, Lu T, Liu Z (2015) A facile synthesis of a uniform constitution of three-dimensionally ordered macroporous TiO2-carbon nanocomposites with hierarchical pores for lithium ion batteries. J Mater Chem A 3:6862–6872

    Article  CAS  Google Scholar 

  34. Chen J, Zou GQ, Hou HS, Zhang Y, Huang ZD, Ji XB (2016) Pinecone-like hierarchical anatase TiO2 bonded with carbon enabling ultrahigh cycling rates for sodium storage. J Mater Chem A 4:12591–12601

    Article  CAS  Google Scholar 

  35. Liu D, Yuan W, Deng L, Yu W, Sun H, Yuan P (2014) Preparation of porous diatomite-templated carbons with large adsorption capacity and mesoporous zeolite K-H as a byproduct. J Colloid Interface Sci 424:22–26

    Article  CAS  Google Scholar 

  36. Hu CY, Zheng SZ, Lian CJ, Hu QH, Duo SW, Zhang RB, Chen F (2015) CTAB-assisted synthesis of S@rGO composite with enhanced photocatalytic activity and photostability. Appl Surf Sci 335:92–98

    Article  CAS  Google Scholar 

  37. Li XY, Chen F, Lian CJ, Zheng SZ, Hu QH, Duo SW, Li WK, Hu CY (2016) Au/TiO2/graphene composite with enhanced photocatalytic activity under both UV and visible light irradiation. J Clust Sci 27:1877–1892

    Article  CAS  Google Scholar 

  38. Manring LE, Kramer MK, Foote CS (1984) Interception of O2- by benzoquinone in cyanoaromatic-sensitized photooxygenations. Tetrahedron Lett 25:2523–2526

    Article  CAS  Google Scholar 

  39. Yang ZM, Jiang YH, Yu QH, Ding YH, Jiang Y, Yin JR, Zhang P (2017) Facile preparation of exposed 001 facet TiO2 nanobelts coated by monolayer carbon and its high-performance photocatalytic activity. J Mater Sci 52:13586–13595. https://doi.org/10.1007/s10853-017-1446-2

    Article  CAS  Google Scholar 

  40. Zhou P, Yu JG, Jaroniec M (2014) All-solid-state Z-scheme photocatalytic systems. Adv Mater 26:4920–4935

    Article  CAS  Google Scholar 

  41. Zhang ZH, Zhang LB, Hedhili MN, Zhang HN, Wang P (2013) Gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13:14–20

    Article  CAS  Google Scholar 

  42. Yan M, Hua YQ, Zhu FF, Sun L, Gu W, Shi WD (2017) Constructing nitrogen doped graphene quantumdots-ZnNb2O6/g-C3N4 catalysts for hydrogen production under visible light. Appl Catal B Environ 206:531–537

    Article  CAS  Google Scholar 

  43. Wang XF, Cheng JJ, Yu HG, Yu JG (2017) Facile hydrothermal synthesis of carbon dots modified g-C3N4 for enhanced photocatalytic H2-evolution performance. Dalton Trans 46:6417–6424

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks for the support of National Natural Science Foundation of China (No. 21663012), Natural Science Foundation of Jiangxi province (20181BAB203009) and Scientific &Technological Project of Jiangxi Science and Technology Normal University (No. 2015CXTD003), P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyuan Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Ma, Y., Li, C. et al. Spatially confined growth of Bi2O4 into hierarchical TiO2 spheres for improved visible light photocatalytic activity. J Mater Sci 55, 3181–3194 (2020). https://doi.org/10.1007/s10853-019-04143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04143-x

Navigation