Skip to main content

Advertisement

Log in

The conformational search, the stability, fragment interaction and resistance to acidic attack of epoxyl-polyurethanes in different solvent media

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Natural-based polyols are seen by polyurethane industries as an alternative to the petroleum-based polyols because of increasing challenges due to the oil crisis and global warming. In this research, four different derivatives of bio-polyols are examined, which include the precursor Jatropha curcas oil (JC) that was extracted from Jatropha curcas seeds, as well as the derivatives epoxidated-polyol (EJ), hydroxylated epoxy-polyol (JP) and epoxy-polyurethane (JU). The computational studies provide more insight into their experimentally observed properties and can be useful in further customized design of this type of bio-polyols for industrial application. Results show that the JU monomer is more stable in terms of potential energy, level of atomic fluctuation, diffusion, radial distribution function, and with properties indicating the possibility of forming the best crystal solid. Monomer JU is also found to have the best resistance to acidic attack, using the results from the interaction energy, radial distribution function (RDF) and level of diffusion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Velayutham TS, Majid WHA, Ahmad AB, Kang GY, Gan SN (2009) Synthesis and characterization of polyurethane coatings derived from polyols synthesized with glycerol, phthalic anhydride and oleic acid. Prog Org Coat 66:367–371. https://doi.org/10.1016/j.porgcoat.2009.08.013

    Article  CAS  Google Scholar 

  2. Petrović ZS, Cevallos MJ, Javni I, Schaefer DW, Justice R (2005) Soy-oil-based segmented polyurethanes. J Polym Sci Part B Polym Phys 43:3178–3190. https://doi.org/10.1002/polb.20607

    Article  CAS  Google Scholar 

  3. Akintayo C, Akintayo ET, Thomas Z, Babalola BM (2014) Newly developed epoxy-polyol and epoxy-polyurethane from renewable resources. Br J Appl Sci Technol 3:984–993. https://doi.org/10.9734/bjast/2013/3985

    Article  Google Scholar 

  4. Hwang H-S, Erhan SZ (2001) Modification of epoxidized soybean oil for lubricant formulations with improved oxidative stability and low pour point. J Am Oil Chem Soc 78:1179–1184. https://doi.org/10.1007/s11745-001-0410-0

    Article  CAS  Google Scholar 

  5. Ismail EA, Motawie AM, Sadek EM (2011) Synthesis and characterization of polyurethane coatings based on soybean oil–polyester polyols. Egypt J Pet 20:1–8. https://doi.org/10.1016/j.ejpe.2011.06.009

    Article  CAS  Google Scholar 

  6. Anjali BA, Suresh CH (2018) Electronic effect of ligands vs. reduction potentials of Fischer carbene complexes of chromium: a molecular electrostatic potential analysis. New J Chem 42:18217–18224. https://doi.org/10.1039/C8NJ04184A

    Article  CAS  Google Scholar 

  7. Remya GS, Suresh CH (2018) Assessment of the electron donor properties of substituted phenanthroline ligands in molybdenum carbonyl complexes using molecular electrostatic potentials. New J Chem 42:3602–3608. https://doi.org/10.1039/C7NJ04592A

    Article  CAS  Google Scholar 

  8. Remya K, Suresh CH (2016) Carbon rings: a DFT study on geometry, aromaticity, intermolecular carbon–carbon interactions and stability. R Socienty Chem Adv 6:44261–44271. https://doi.org/10.1039/c6ra06833b

    Article  CAS  Google Scholar 

  9. Mohan N, Suresh CH, Kumar A, Gadre SR (2013) Molecular electrostatics for probing lone pair– p interactions. Physiol Chem Phys 15:18401–18409. https://doi.org/10.1039/c3cp53379d

    Article  CAS  Google Scholar 

  10. Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Accounts 108:134–142. https://doi.org/10.1007/s00214-002-0363-9

    Article  CAS  Google Scholar 

  11. Politzer P, Murray JS, Peralta-Inga Z (2001) Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems. Int J Quantum Chem 85:676–684. https://doi.org/10.1002/qua.1706

    Article  CAS  Google Scholar 

  12. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, X. Nakatsuji, H. Li, M. Caricato, A. V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J. V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 16, revision B.01, (2016)

  13. Dupradeau F-Y, Pigache A, Zaffran T, Savineau C, Lelong R, Grivel N, Lelong D, Rosanski W, Cieplak P (2010) The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. Phys Chem Chem Phys 12:7821–7839. https://doi.org/10.1039/c0cp00111b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D.A. Case, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, I. T. E. Cheatham, V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, D. Ghoreishi, M.K. Gilson, H. Gohlke, A.W. Goetz, D. Greene, R. Harris, N. Homeyer, S. Izadi, A. Kovalenko, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D.J. Mermelstein, K.M. Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, J. Smith, R. Salomon-Ferrer, J. Swails, R.C. Walker, J. Wang, H. Wei, R.M.W. Wu, L. Xiao, D.M. York, P.A. Kollman, Amber 18, (2018)

  15. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  16. Lehr GF, Lawler RG (1984) Quantitative CIDNP evidence for the SH2 reaction of alkyl radicals with Grignard reagents. Implication to the iron catalyzed Kharasch reaction. J Am Chem Soc 106:4048–4049. https://doi.org/10.1021/ja00326a035

    Article  CAS  Google Scholar 

  17. Grant BJ, Rodrigues APC, ElSawy KM, McCammon JA, Caves LSD (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinforma 22:2695–2696. https://doi.org/10.1093/bioinformatics/btl461

    Article  CAS  Google Scholar 

  18. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  19. Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved marching Tetrahedra algorithm. J Mol Graph Model 38:314–323. https://doi.org/10.1016/j.jmgm.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  20. Glendening ED, Streitwieser A (1994) Natural energy decomposition analysis: an energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor – acceptor interactions natural energy decomposition analysis: an energy par. J Chem Phys 100:2900–2909. https://doi.org/10.1063/1.466432

    Article  CAS  Google Scholar 

  21. Kazuo K, Keiji M (2004) A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int J Quantum Chem 10:325–340. https://doi.org/10.1002/qua.560100211

    Article  Google Scholar 

  22. S.R. Gadre, R.N. Shirsat, Electrostatics of atoms and molecules, Universities Press, India, 200AD

  23. Gadre SR, Pathak RK (1990) Nonexistence of local maxima in molecular electrostatic potential maps. Proc Indian Acad Sci - Chem Sci 102:189–192. https://doi.org/10.1007/BF02860157

    Article  CAS  Google Scholar 

  24. Gadre SR, Kulkarni SA, Pathak RK (1991) Reply to the comment on: maximal and minimal characteristics of molecular electrostatic potentials: some further extensions [2]. J Chem Phys 94:8639. https://doi.org/10.1063/1.460055

    Article  CAS  Google Scholar 

  25. Gadre SR, Kulkarni SA, Shrivastava IH (1992) Molecular electrostatic potentials: a topographical study. J Chem Phys 96:5253–5260. https://doi.org/10.1063/1.462710

    Article  CAS  Google Scholar 

  26. Li W, Yang N, Lyu Y (2016) A mechanistic study on guanidine-catalyzed chemical fixation of CO2 with 2-aminobenzonitrile to quinazoline-2,4(1: H,3 H)-dione. Org Chem Front 3:823–835. https://doi.org/10.1039/c6qo00085a

    Article  CAS  Google Scholar 

  27. Kaul D, Kaur R (2015) Theoretical characterization of hydrogen bonding interactions between RCHO (R = H, CN, CF3, OCH3, NH2) and HOR′(R′ = H, Cl, CH3, NH2, C(O)H, C6H5). J Chem Sci 127:1299–1313. https://doi.org/10.1007/s12039-015-0885-z

    Article  CAS  Google Scholar 

  28. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  Google Scholar 

  29. ChemAxon, MarvinSketch, (2017). http://www.chemaxon.com

  30. T. Williams, C. Kelley, J. Campbell, R. Cunningham, D. Denholm, G. Elber, R. Fearick, C. Grammes, L. Hart, L. Hecking, T. Koenig, D. Kotz, E. Kubaitis, R. Lang, A. Lehmann, A. Mai, M. Bastian, E. A Merritt, P. Mikul, T. Tkacik, J. Van Der Woude, J.R. Van Zandt, A. Woo, J. Zellner, Gnuplot 4.6, Softw. Man. (2012) 238

  31. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:27–28-38

    Article  Google Scholar 

  32. von Frantzius G, Streubel R (2010) Calculation of 31 P and 183 W NMR chemical shifts and nuclear spin coupling constants in phosphinidenoid and other transition metal complexes by the ZORA DFT method. In: Münster G, Wolf D, Kremer M (eds) Neumann Inst. Comput. Symp. Forschungszentrum Jülich, Jülich, pp 119–128

    Google Scholar 

  33. Riasat Harami H, Asghari M (2019) 3-aminopropyltriethoxysilane-aided cross-linked chitosan membranes for gas separation: grand canonical Monte Carlo and molecular dynamics simulations. J Mol Model 25. https://doi.org/10.1007/s00894-019-3929-3

  34. M.A. Nejad, H.M. Urbassek, Adsorption and diffusion of cisplatin molecules in nanoporous materials: a molecular dynamics study, (2019). doi:https://doi.org/10.3390/biom9050204

Download references

Funding

The authors would like to acknowledge the University of the Free State and the NRF in South Africa for financial support (Grant Nos: 109673, 113327 and 96111), and CHPC for the simulation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adebayo A. Adeniyi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical statement

This study does not require any ethical clearance.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 671 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeniyi, A.A., Akintayo, C.O., Akintayo, E.T. et al. The conformational search, the stability, fragment interaction and resistance to acidic attack of epoxyl-polyurethanes in different solvent media. Struct Chem 31, 861–875 (2020). https://doi.org/10.1007/s11224-019-01470-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01470-2

Keywords

Navigation