Skip to main content
Log in

Mitigation of voltage decay in Li-rich layered oxides as cathode materials for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-rich layered oxides (LLOs) have been extensively studied as cathode materials for lithium-ion batteries (LIBs) by researchers all over the world in the past decades due to their high specific capacities and high charge-discharge voltages. However, as cathode materials LLOs have disadvantages of significant voltage and capacity decays during the charge-discharge cycling. It was shown in the past that fine-tuning of structures and compositions was critical to the performances of this kind of materials. In this report, LLOs with target composition of Li1.17Mn0.50Ni0.24Co0.09O2 were prepared by carbonate co-precipitation method with different pH values. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and electrochemical impedance spectroscopies (EIS) were used to investigate the structures and morphologies of the materials and to understand the improvements of their electrochemical performances. With the pH values increased from 7.5 to 8.5, the Li/Ni ratios in the compositions decreased from 5.17 to 4.64, and the initial Coulombic efficiency, cycling stability and average discharge voltages were gained impressively. Especially, the material synthesized at pH = 8.5 delivered a reversible discharge capacity of 263 mAhg−1 during the first cycle, with 79.0% initial Coulombic efficiency, at the rate of 0.1 C and a superior capacity retention of 94% after 100 cycles at the rate of 1 C. Furthermore, this material exhibited an initial average discharge voltage of 3.65 V, with a voltage decay of only 0.09 V after 50 charge-discharge cycles. The improved electrochemical performances by varying the pH values in the synthesis process can be explained by the mitigation of layered-to-spinel phase transformation and the reduction of solid-electrolyte interface (SEI) resistance. We hope this work can shed some light on the alleviation of voltage and capacity decay issues of the LLOs cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater.2018, 30, 1800561.

    Google Scholar 

  2. Zeng, X. Q.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A. S.; Lu, J.; Amine, K. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater.2019, 9, 1900161.

    Google Scholar 

  3. Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy2019, 4, 540–550.

    Google Scholar 

  4. Yu, H. J.; Zhou, H. S. High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett.2013, 4, 1268–1280.

    CAS  Google Scholar 

  5. Ye, D. L.; Wang, L. Z. Li2MnO3 based Li-rich cathode materials: Towards a better tomorrow of high energy lithium ion batteries. Mater. Technol.2014, 29, A59–A69.

    CAS  Google Scholar 

  6. Jarvis, K. A.; Deng, Z. Q.; Allard, L. F.; Manthiram, A.; Ferreira, P. J. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution. Chem. Mater.2011, 23, 3614–3621.

    CAS  Google Scholar 

  7. Johnson, C. S.; Kim, J. S.; Lefief, C.; Li, N.; Vaughey, J. T.; Thackeray, M. M. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x) LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun.2004, 6, 1085–1091.

    CAS  Google Scholar 

  8. Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vaughey, J. T.; Hackney, S. A. Comments on the structural complexity of lithiumrich Li1+xM1−xO2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem. Commun.2006, 8, 1531–1538.

    CAS  Google Scholar 

  9. Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; Gonbeau, D.; Walker, W. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater.2013, 12, 827–835.

    CAS  Google Scholar 

  10. Sathiya, M.; Abakumov, A. M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanère, M.; Doublet, M. L.; Vezin, H.; Laisa, C. P. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater.2015, 14, 230–238.

    CAS  Google Scholar 

  11. McCalla, E.; Abakumov, A. M.; Saubanère, M.; Foix, D.; Berg, E. J.; Rousse, G.; Doublet, M. L.; Gonbeau, D.; Novák, P. et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science2015, 350, 1516–1521.

    CAS  Google Scholar 

  12. Seo, D. H.; Lee, J.; Urban, A.; Malik, R.; Kang, S. Y.; Ceder, G. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem.2016, 8, 692–697.

    CAS  Google Scholar 

  13. Saubanère, M.; McCalla, E.; Tarascon, J. M.; Doublet, M. L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci.2016, 9, 984–991.

    Google Scholar 

  14. Luo, K.; Roberts, M. R.; Hao, R.; Guerrini, N.; Pickup, D. M.; Liu, Y. S.; Edström, K.; Guo, J. H.; Chadwick, A. V.; Duda, L. C. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem.2016, 8, 684–691.

    CAS  Google Scholar 

  15. Gu, M.; Belharouak, I.; Zheng, J. M.; Wu, H. M.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J. G. et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano2013, 7, 760–767.

    CAS  Google Scholar 

  16. Croy, J. R.; Kim, D.; Balasubramanian, M.; Gallagher, K.; Kang, S. H.; Thackeray, M. M. Countering the voltage decay in high capacity xLi2MnO3·(1−x)LiMO2 electrodes (M = Mn, Ni, Co) for Li+-ion batteries. J. Electrochem. Soc.2012, 159, A781–A790.

    CAS  Google Scholar 

  17. Mohanty, D.; Sefat, A. S.; Kalnaus, S.; Li, J. L.; Meisner, R. A.; Payzant, E. A.; Abraham, D. P.; Wood, D. L.; Daniel, C. Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. J. Mater. Chem. A2013, 1, 6249–6261.

    CAS  Google Scholar 

  18. Croy, J. R.; Gallagher, K. G.; Balasubramanian, M.; Chen, Z. H.; Ren, Y.; Kim, D. H.; Kang, S. H.; Dees, D. W.; Thackeray, M. M. Examining hysteresis in composite xLi2MnO3·(1−x)LiMO2 cathode structures. J. Phys. Chem. C2013, 117, 6525–6536.

    CAS  Google Scholar 

  19. Ito, A.; Shoda, K.; Sato, Y.; Hatano, M.; Horie, H.; Ohsawa, Y. Direct observation of the partial formation of a framework structure for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 upon the first charge and discharge. J. Power Sources2011, 196, 4785–4790.

    CAS  Google Scholar 

  20. Mohanty, D.; Li, J. L.; Abraham, D. P.; Huq, A.; Payzant, E. A.; Wood III, D. L.; Daniel, C. Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: Origin of the tetrahedral cations for spinel conversion. Chem. Mater.2014, 26, 6272–6280.

    CAS  Google Scholar 

  21. Gallagher, K. G.; Croy, J. R.; Balasubramanian, M.; Bettge, M.; Abraham, D. P.; Burrell, A. K.; Thackeray, M. M. Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes. Electrochem. Commun.2013, 33, 96–98.

    CAS  Google Scholar 

  22. Mohanty, D.; Kalnaus, S.; Meisner, R. A.; Rhodes, K. J.; Li, J. L.; Payzant, E. A.; Wood III, D. L.; Daniel, C. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J. Power Sources2013, 229, 239–248.

    CAS  Google Scholar 

  23. Xu, B.; Fell, C. R.; Chi, M. F.; Meng, Y. S. Identifying surface structural changes in layered Li-excess nickel manganeseoxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci.2011, 4, 2223–2233.

    CAS  Google Scholar 

  24. Zheng, J. M.; Gu, M.; Xiao, J.; Zuo, P. J.; Wang, C. M.; Zhang, J. G. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett.2013, 13, 3824–3830.

    CAS  Google Scholar 

  25. Liu, W.; Oh, P.; Liu, X. E.; Myeong, S.; Cho, W.; Cho, J. Countering voltage decay and capacity fading of Lithium-rich cathode material at 60 °C by hybrid surface protection layers. Adv. Energy Mater.2015, 5, 1500274.

    Google Scholar 

  26. Yan, W. W.; Liu, Y. N.; Guo, S. W.; Jiang, T. Effect of defects on decay of voltage and capacity for Li[Li0.15Ni0.2Mn0.6]O2 cathode material. ACS Appl. Mater. Interfaces2016, 8, 12118–12126.

    CAS  Google Scholar 

  27. Singer, A.; Zhang, M.; Hy, S.; Cela, D.; Fang, C.; Wynn, T. A.; Qiu, B.; Xia, Y.; Liu, Z.; Ulvestad, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy2018, 3, 641–647.

    CAS  Google Scholar 

  28. Ates, M. N.; Jia, Q. Y.; Shah, A.; Busnaina, A.; Mukerjee, S.; Abraham, K. M. Mitigation of layered to spinel conversion of a Li-rich layered metal oxide cathode material for Li-ion batteries. J. Electrochem. Soc.2015, 161, A290–A301.

    Google Scholar 

  29. Li, Q.; Li, G. S.; Fu, C. C.; Luo, D.; Fan, J. M.; Li, L. P. K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl. Mater. Interfaces2014, 6, 10330–10341.

    CAS  Google Scholar 

  30. Nayak, P. K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, J. W.; Aurbach, D. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv. Energy Mater.2016, 6, 1502398.

    Google Scholar 

  31. Nayak, P. K.; Grinblat, J.; Levi, E.; Levi, M.; Markovsky, B.; Aurbach, D. Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries. Phys. Chem. Chem. Phys.2017, 19, 6142–6152.

    CAS  Google Scholar 

  32. Nayak, P. K.; Grinblat, J.; Levi, M.; Haik, O.; Levi, E.; Aurbach, D. Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries. J. Solid State Electrochem.2015, 19, 2781–2792.

    CAS  Google Scholar 

  33. Zheng, J. M.; Gu, M.; Xiao, J.; Polzin, B. J.; Yan, P. F.; Chen, X. L.; Wang, C. M.; Zhang, J. G. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials. Chem. Mater.2014, 26, 6320–6327.

    CAS  Google Scholar 

  34. Sun, Y. K.; Lee, M. J.; Yoon, C. S.; Hassoun, J.; Amine, K.; Scrosati, B. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater.2012, 24, 1192–1196.

    CAS  Google Scholar 

  35. Wu, Y.; Manthiram, A. High capacity, surface-modified layered Li[Li(1−x)/3Mn(2−x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss. Electrochem. Solid-State Lett.2006, 9, A221–A224.

    CAS  Google Scholar 

  36. Qiu, B.; Wang, J.; Xia, Y. G.; Wei, Z.; Han, S. J.; Liu, Z. P. Enhanced electrochemical performance with surface coating by reactive magnetron sputtering on lithium-rich layered oxide electrodes. ACS Appl. Mater. Interfaces2014, 6, 9185–9193.

    CAS  Google Scholar 

  37. Wang, Q. Y.; Liu, J.; Murugan, A. V.; Manthiram, A. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability. J. Mater. Chem.2009, 19, 4965–4972.

    CAS  Google Scholar 

  38. Zheng, F. H.; Yang, C. H.; Xiong, X. H.; Xiong, J. W.; Hu, R. Z.; Chen, Y.; Liu, M. L. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew. Chem., Int. Ed.2015, 54, 13058–13062.

    CAS  Google Scholar 

  39. Zheng, J. M; Gu, M.; Genc, A.; Xiao, J.; Xu, P. H.; Chen, X. L.; Zhu, Z. H.; Zhao, W. B.; Pullan, L.; Wang, C. M. et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett.2014, 14, 2628–2635.

    CAS  Google Scholar 

  40. Ren, D.; Shen, Y.; Yang, Y.; Shen, L. X.; Levin, B. D. A.; Yu, Y. C.; Muller, D. A.; Abruna, H. D. Systematic optimization of battery materials: Key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces2017, 9, 35811–35819.

    CAS  Google Scholar 

  41. Lee, D. K.; Park, S. H.; Amine, K.; Bang, H. J.; Parakash, J.; Sun, Y. K. High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method. J. Power Sources2006, 162, 1346–1350.

    CAS  Google Scholar 

  42. Shi, J. L.; Zhang, J. N.; He, M.; Zhang, X. D.; Yin, Y. X.; Li, H.; Guo, Y. G.; Gu, L.; Wan, L. J. Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries. ACS Appl. Mater. Interfaces2016, 8, 20138–20146.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (No. 21271145), the National Science Foundation of Hubei Province (No. 2015CFB537) and the Science and Technology Innovation Committee of Shenzhen Municipality (No. JCYJ20170306171321438) for the financial support for this investigation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youxiang Zhang or Hengjiang Cong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Zhang, Y., Zan, L. et al. Mitigation of voltage decay in Li-rich layered oxides as cathode materials for lithium-ion batteries. Nano Res. 13, 151–159 (2020). https://doi.org/10.1007/s12274-019-2588-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2588-0

Keywords

Navigation