Skip to main content

Advertisement

Log in

Bioconjugated Plasmonic Nanoparticles for Enhanced Skin Penetration

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Plasmonic nanoparticles (NPs) are one of the most promising and studied inorganic nanomaterials for different biomedical applications. Plasmonic NPs have excellent biocompatibility, long-term stability against physical and chemical degradation, relevant optical properties, well-known synthesis methods and tuneable surface functionalities. Herein, we review recently reported bioconjugated plasmonic NPs using different chemical approaches and loading cargoes (such as drugs, genes, and proteins) for enhancement of transdermal delivery across biological tissues. The main aim is to understand the interaction of the complex skin structure with biomimetic plasmonic NPs. This knowledge is not only important in enhancing transdermal delivery of pharmaceutical formulations but also for controlling undesired skin penetration of industrial products, such as cosmetics, sunscreen formulations and any other mass-usage consumable that contains plasmonic NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Copyright Elsevier, 2018

Similar content being viewed by others

References

  1. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693. https://doi.org/10.2217/17435889.2.5.681

    Article  CAS  PubMed  Google Scholar 

  2. Giner-Casares JJ, Henriksen-Lacey M, Coronado-Puchau M, Liz-Marzán LM (2016) Inorganic nanoparticles for biomedicine: where materials scientists meet medical research. Mater Today 19:19–28. https://doi.org/10.1016/j.mattod.2015.07.004

    Article  CAS  Google Scholar 

  3. Ogarev VA, Rudoi VM, Dement’eva OV (2018) Gold nanoparticles: synthesis, optical properties, and application. Inorg Mater Appl Res 9:134–140. https://doi.org/10.1134/S2075113318010197

    Article  Google Scholar 

  4. Shukla R, Bansal V, Chaudhary M et al (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654. https://doi.org/10.1021/la0513712

    Article  CAS  PubMed  Google Scholar 

  5. Burduşel A-C, Gherasim O, Grumezescu AM et al (2018) Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials 8:681. https://doi.org/10.3390/nano8090681

    Article  CAS  PubMed Central  Google Scholar 

  6. Woehrle GH, Brown LO, Hutchison JE (2005) Thiol-functionalized, 1.5-nm gold nanoparticles through ligand exchange reactions: scope and mechanism of ligand exchange. J Am Chem Soc 127:2172–2183. https://doi.org/10.1021/ja0457718

    Article  CAS  PubMed  Google Scholar 

  7. Alba-Molina D, Puente Santiago AR, Giner-Casares JJ et al (2019) Tailoring the ORR and HER electrocatalytic performances of gold nanoparticles through metal–ligand interfaces. J Mater Chem A 7:20425–20434. https://doi.org/10.1039/C9TA05492H

    Article  CAS  Google Scholar 

  8. Berry V, Saraf RF (2005) Self-assembly of nanoparticles on live bacterium: an avenue to fabricate electronic devices. Angew Chemie Int Ed 44:6668–6673. https://doi.org/10.1002/anie.200501711

    Article  CAS  Google Scholar 

  9. Chen Y-S, Hong M-Y, Huang GS (2012) A protein transistor made of an antibody molecule and two gold nanoparticles. Nat Nanotechnol 7:197–203. https://doi.org/10.1038/nnano.2012.7

    Article  CAS  PubMed  Google Scholar 

  10. Alba-Molina D, Rodriguez-Padron D, Puente Santiago ARR et al (2018) Mimicking the bioelectrocatalytic function of recombinant CotA laccase via electrostatically self-assembled nanobioconjugates. Nanoscale. https://doi.org/10.1039/C8NR06001K

    Article  Google Scholar 

  11. Alba-Molina D, Puente Santiago AR, Giner-Casares JJ et al (2019) Citrate-stabilized gold nanoparticles as high-performance electrocatalysts: the role of size in the electroreduction of oxygen. J Phys Chem C 123:9807–9812. https://doi.org/10.1021/acs.jpcc.9b00249

    Article  CAS  Google Scholar 

  12. Upadhyayula VKK (2012) Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 715:1–18. https://doi.org/10.1016/j.aca.2011.12.008

    Article  CAS  PubMed  Google Scholar 

  13. Draz MS, Shafiee H (2018) Applications of gold nanoparticles in virus detection. Theranostics 8:1985–2017. https://doi.org/10.7150/thno.23856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28. https://doi.org/10.1016/j.jare.2010.02.002

    Article  Google Scholar 

  15. Vines JB, Yoon J-H, Ryu N-E et al (2019) Gold nanoparticles for photothermal cancer therapy. Front Chem 7:167. https://doi.org/10.3389/fchem.2019.00167

  16. Dreaden EC, Austin LA, Mackey MA, El-Sayed MA (2012) Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv 3:457–478. https://doi.org/10.4155/tde.12.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Farooq MU, Novosad V, Rozhkova EA et al (2018) Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Sci Rep 8:2907. https://doi.org/10.1038/s41598-018-21331-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cole LE, Ross RD, Tilley JM et al (2015) Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine 10:321–341. https://doi.org/10.2217/nnm.14.171

    Article  CAS  PubMed  Google Scholar 

  19. Mahan MM, Doiron AL (2018) Gold nanoparticles as X-ray, CT, and multimodal imaging contrast agents: formulation, targeting, and methodology. J Nanomater 2018:1–15. https://doi.org/10.1155/2018/5837276

    Article  CAS  Google Scholar 

  20. Gong P, Li H, He X et al (2007) Preparation and antibacterial activity of Fe3O4 @Ag nanoparticles. Nanotechnology 18:285604. https://doi.org/10.1088/0957-4484/18/28/285604

    Article  CAS  Google Scholar 

  21. Durán N, Durán M, de Jesus MB et al (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol Biol Med 12:789–799. https://doi.org/10.1016/j.nano.2015.11.016

    Article  CAS  Google Scholar 

  22. Samberg ME, Oldenburg SJ, Monteiro-Riviere NA (2010) Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118:407–413. https://doi.org/10.1289/ehp.0901398

    Article  CAS  PubMed  Google Scholar 

  23. Brandt O, Mildner M, Egger AE et al (2012) Nanoscalic silver possesses broad-spectrum antimicrobial activities and exhibits fewer toxicological side effects than silver sulfadiazine. Nanomed Nanotechnol Biol Med 8:478–488. https://doi.org/10.1016/j.nano.2011.07.005

    Article  CAS  Google Scholar 

  24. Pegoraro C, MacNeil S, Battaglia G (2012) Transdermal drug delivery: from micro to nano. Nanoscale 4:1881. https://doi.org/10.1039/c2nr11606e

    Article  CAS  PubMed  Google Scholar 

  25. Amjadi M, Mostaghaci B, Sitti M (2017) Recent advances in skin penetration enhancers for transdermal gene and drug delivery. Curr Gene Ther 17:139–146. https://doi.org/10.2174/1566523217666170510151540

  26. Prausnitz MR, Mitragotri S, Langer R (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3:115–124. https://doi.org/10.1038/nrd1304

    Article  CAS  PubMed  Google Scholar 

  27. Patzelt A, Lademann J (2013) Drug delivery to hair follicles. Expert Opin Drug Deliv 10:787–797. https://doi.org/10.1517/17425247.2013.776038

    Article  CAS  PubMed  Google Scholar 

  28. Lauterbach A, Müller-Goymann CC (2015) Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur J Pharm Biopharm 97:152–163. https://doi.org/10.1016/j.ejpb.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  29. Vogt A, Wischke C, Neffe AT et al (2016) Nanocarriers for drug delivery into and through the skin—do existing technologies match clinical challenges? J Control Release 242:3–15. https://doi.org/10.1016/j.jconrel.2016.07.027

    Article  CAS  PubMed  Google Scholar 

  30. Larese Filon F, Mauro M, Adami G et al (2015) Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicol Pharmacol 72:310–322. https://doi.org/10.1016/j.yrtph.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  31. Núñez-Lozano R, Cano M, Pimentel B, de la Cueva-Méndez G (2015) ‘Smartening’ anticancer therapeutic nanosystems using biomolecules. Curr Opin Biotechnol 35:135–140. https://doi.org/10.1016/j.copbio.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  32. Campbell CSJ, Contreras-Rojas LR, Delgado-Charro MB, Guy RH (2012) Objective assessment of nanoparticle disposition in mammalian skin after topical exposure. J Control Release 162:201–207. https://doi.org/10.1016/j.jconrel.2012.06.024

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Y, Damasceno PF, Somashekar BS et al (2018) Unusual multiscale mechanics of biomimetic nanoparticle hydrogels. Nat Commun 9:181. https://doi.org/10.1038/s41467-017-02579-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Larese FF, D’Agostin F, Crosera M et al (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255:33–37. https://doi.org/10.1016/j.tox.2008.09.025

    Article  CAS  PubMed  Google Scholar 

  35. Bianco C, Adami G, Crosera M et al (2014) Silver percutaneous absorption after exposure to silver nanoparticles: a comparison study of three human skin graft samples used for clinical applications. Burns 40:1390–1396. https://doi.org/10.1016/j.burns.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  36. Larese Filon F, Crosera M, Adami G et al (2011) Human skin penetration of gold nanoparticles through intact and damaged skin. Nanotoxicology 5:493–501. https://doi.org/10.3109/17435390.2010.551428

    Article  CAS  Google Scholar 

  37. Sonavane G, Tomoda K, Sano A et al (2008) In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B Biointerfaces 65:1–10. https://doi.org/10.1016/j.colsurfb.2008.02.013

    Article  CAS  PubMed  Google Scholar 

  38. Raju G, Katiyar N, Vadukumpully S, Shankarappa SA (2018) Penetration of gold nanoparticles across the stratum corneum layer of thick-Skin. J Dermatol Sci 89:146–154. https://doi.org/10.1016/j.jdermsci.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  39. Rivera-Gil P, Jimenez De Aberasturi D, Wulf V et al (2013) The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc Chem Res 46:743–749. https://doi.org/10.1021/ar300039j

    Article  CAS  PubMed  Google Scholar 

  40. Avci P, Sadasivam M, Gupta A et al (2013) Animal models of skin disease for drug discovery. Expert Opin Drug Discov 8:331–355. https://doi.org/10.1517/17460441.2013.761202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179:93–100. https://doi.org/10.1016/j.toxlet.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  42. Liu DC, Raphael AP, Sundh D et al (2012) The human stratum corneum prevents small gold nanoparticle penetration and their potential toxic metabolic consequences. J Nanomater 2012:1–8. https://doi.org/10.1155/2012/721706

    Article  CAS  Google Scholar 

  43. Cano M, Núñez-Lozano R, Lumbreras R et al (2017) Partial PEGylation of superparamagnetic iron oxide nanoparticles thinly coated with amine-silane as a source of ultrastable tunable nanosystems for biomedical applications. Nanoscale 9:812–822. https://doi.org/10.1039/C6NR07462F

    Article  CAS  PubMed  Google Scholar 

  44. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783. https://doi.org/10.1039/b711490g

    Article  CAS  PubMed  Google Scholar 

  45. Hühn J, Carrillo-Carrion C, Soliman MG et al (2017) Selected standard protocols for the synthesis, phase transfer, and characterization of inorganic colloidal nanoparticles. Chem Mater 29:399–461. https://doi.org/10.1021/acs.chemmater.6b04738

    Article  CAS  Google Scholar 

  46. Sánchez-Iglesias A, Winckelmans N, Altantzis T et al (2017) High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning. J Am Chem Soc 139:107–110. https://doi.org/10.1021/jacs.6b12143

    Article  CAS  PubMed  Google Scholar 

  47. Toy R, Peiris PM, Ghaghada KB, Karathanasis E (2014) Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 9:121–134. https://doi.org/10.2217/nnm.13.191

    Article  CAS  PubMed  Google Scholar 

  48. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951. https://doi.org/10.1038/nbt.3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang W, Gaus K, Tilley RD, Gooding JJ (2019) The impact of nanoparticle shape on cellular internalisation and transport: what do the different analysis methods tell us? Mater Horizons 6:1538–1547. https://doi.org/10.1039/C9MH00664H

    Article  CAS  Google Scholar 

  50. Fernandes R, Smyth NR, Muskens OL et al (2015) Interactions of skin with gold nanoparticles of different surface charge, shape, and functionality. Small 11:713–721. https://doi.org/10.1002/smll.201401913

    Article  CAS  PubMed  Google Scholar 

  51. Tak YK, Pal S, Naoghare PK et al (2015) Shape-dependent skin penetration of silver nanoparticles: does it really matter? Sci Rep 5:16908. https://doi.org/10.1038/srep16908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Turkevich J, Kim G (1970) Palladium: preparation and catalytic properties of particles of uniform size. Science 169:873–879. https://doi.org/10.1126/science.169.3948.873

    Article  CAS  PubMed  Google Scholar 

  53. Kimling J, Maier M, Okenve B et al (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707. https://doi.org/10.1021/jp061667w

    Article  CAS  PubMed  Google Scholar 

  54. Labouta HI, Liu DC, Lin LL et al (2011) Gold nanoparticle penetration and reduced metabolism in human skin by toluene. Pharm Res 28:2931–2944. https://doi.org/10.1007/s11095-011-0561-z

    Article  CAS  PubMed  Google Scholar 

  55. Labouta HI, El-Khordagui LK, Kraus T, Schneider M (2011) Mechanism and determinants of nanoparticle penetration through human skin. Nanoscale 3:4989. https://doi.org/10.1039/c1nr11109d

    Article  CAS  PubMed  Google Scholar 

  56. Huang Y, Yu F, Park Y-S et al (2010) Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials 31:9086–9091. https://doi.org/10.1016/j.biomaterials.2010.08.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hong S, Bielinska AU, Mecke A et al (2004) Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem 15:774–782. https://doi.org/10.1021/bc049962b

    Article  CAS  PubMed  Google Scholar 

  58. Kirjavainen M, Urtti A, Jääskeläinen I et al (1996) Interaction of liposomes with human skin in vitro—the influence of lipid composition and structure. Biochim Biophys Acta Lipids Lipid Metab 1304:179–189. https://doi.org/10.1016/S0005-2760(96)00126-9

    Article  CAS  Google Scholar 

  59. Shanmugam S, Song C-K, Nagayya-Sriraman S et al (2009) Physicochemical characterization and skin permeation of liposome formulations containing clindamycin phosphate. Arch Pharm Res 32:1067–1075. https://doi.org/10.1007/s12272-009-1713-0

    Article  CAS  PubMed  Google Scholar 

  60. Lee O, Jeong SH, Shin WU et al (2013) Influence of surface charge of gold nanorods on skin penetration. Ski Res Technol 19:e390–e396. https://doi.org/10.1111/j.1600-0846.2012.00656.x

    Article  Google Scholar 

  61. Mahmoud NN, Al-Qaoud KM, Al-Bakri AG et al (2016) Colloidal stability of gold nanorod solution upon exposure to excised human skin: effect of surface chemistry and protein adsorption. Int J Biochem Cell Biol 75:223–231. https://doi.org/10.1016/j.biocel.2016.02.020

    Article  CAS  PubMed  Google Scholar 

  62. Hao F, Jin X, Liu QS et al (2017) Epidermal penetration of gold nanoparticles and its underlying mechanism based on human reconstructed 3D episkin model. ACS Appl Mater Interfaces 9:42577–42588. https://doi.org/10.1021/acsami.7b13700

    Article  CAS  PubMed  Google Scholar 

  63. Suk JS, Xu Q, Kim N et al (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51. https://doi.org/10.1016/j.addr.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  64. Tsai H-C, Hsiao PF, Peng S et al (2016) Enhancing the in vivo transdermal delivery of gold nanoparticles using poly(ethylene glycol) and its oleylamine conjugate. Int J Nanomed 11:1867–1878. https://doi.org/10.2147/IJN.S102599

  65. Mahmoud NN, Alkilany AM, Dietrich D et al (2017) Preferential accumulation of gold nanorods into human skin hair follicles: effect of nanoparticle surface chemistry. J Colloid Interface Sci 503:95–102. https://doi.org/10.1016/j.jcis.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  66. Labala S, Mandapalli PK, Kurumaddali A, Venuganti VVK (2015) Layer-by-layer polymer coated gold nanoparticles for topical delivery of imatinib mesylate to treat melanoma. Mol Pharm 12:878–888. https://doi.org/10.1021/mp5007163

    Article  CAS  PubMed  Google Scholar 

  67. Bessar H, Venditti I, Benassi L et al (2016) Functionalized gold nanoparticles for topical delivery of methotrexate for the possible treatment of psoriasis. Colloids Surf B Biointerfaces 141:141–147. https://doi.org/10.1016/j.colsurfb.2016.01.021

    Article  CAS  PubMed  Google Scholar 

  68. Pan A, Zhong M, Wu H et al (2018) Topical application of keratinocyte growth factor conjugated gold nanoparticles accelerate wound healing. Nanomed Nanotechnol Biol Med 14:1619–1628. https://doi.org/10.1016/j.nano.2018.04.007

    Article  CAS  Google Scholar 

  69. Niu J, Chu Y, Huang Y-F et al (2017) Transdermal gene delivery by functional peptide-conjugated cationic gold nanoparticle reverses the progression and metastasis of cutaneous melanoma. ACS Appl Mater Interfaces 9:9388–9401. https://doi.org/10.1021/acsami.6b16378

    Article  CAS  PubMed  Google Scholar 

  70. Chen Y, Wu Y, Gao J et al (2017) Transdermal vascular endothelial growth factor delivery with surface engineered gold nanoparticles. ACS Appl Mater Interfaces 9:5173–5180. https://doi.org/10.1021/acsami.6b15914

    Article  CAS  PubMed  Google Scholar 

  71. Safwat MA, Soliman GM, Sayed D, Attia MA (2017) Gold nanoparticles capped with benzalkonium chloride and poly (ethylene imine) for enhanced loading and skin permeability of 5-fluorouracil. Drug Dev Ind Pharm 43:1780–1791. https://doi.org/10.1080/03639045.2017.1339082

    Article  CAS  PubMed  Google Scholar 

  72. Safwat MA, Soliman GM, Sayed D, Attia MA (2018) Fluorouracil-loaded gold nanoparticles for the treatment of skin cancer: development, in vitro characterization, and in vivo evaluation in a mouse skin cancer xenograft model. Mol Pharm 15:2194–2205. https://doi.org/10.1021/acs.molpharmaceut.8b00047

    Article  CAS  PubMed  Google Scholar 

  73. Boca S, Berce C, Jurj A et al (2017) Ruxolitinib-conjugated gold nanoparticles for topical administration: an alternative for treating alopecia? Med Hypotheses 109:42–45. https://doi.org/10.1016/j.mehy.2017.09.023

    Article  CAS  PubMed  Google Scholar 

  74. Anirudhan TS, Nair SS, Sasidharan AV (2017) Methacrylate-stitched β-cyclodextrin embedded with nanogold/nanotitania: a skin adhesive device for enhanced transdermal drug delivery. ACS Appl Mater Interfaces 9:44377–44391. https://doi.org/10.1021/acsami.7b16686

    Article  CAS  PubMed  Google Scholar 

  75. Anirudhan TS, Nair SS, Sekhar VC (2017) Deposition of gold-cellulose hybrid nanofiller on a polyelectrolyte membrane constructed using guar gum and poly(vinyl alcohol) for transdermal drug delivery. J Memb Sci 539:344–357. https://doi.org/10.1016/j.memsci.2017.05.054

    Article  CAS  Google Scholar 

  76. Crisan D, Scharffetter-Kochanek K, Crisan M et al (2018) Topical silver and gold nanoparticles complexed with Cornus mas suppress inflammation in human psoriasis plaques by inhibiting NF-κB activity. Exp Dermatol 27:1166–1169. https://doi.org/10.1111/exd.13707

    Article  CAS  PubMed  Google Scholar 

  77. Wang S, Yan C, Zhang X et al (2018) Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing. Biomater Sci 6:2757–2772. https://doi.org/10.1039/C8BM00807H

    Article  CAS  PubMed  Google Scholar 

  78. Fratoddi I, Benassi L, Botti E et al (2019) Effects of topical methotrexate loaded gold nanoparticle in cutaneous inflammatory mouse model. Nanomed Nanotechnol Biol Med 17:276–286. https://doi.org/10.1016/j.nano.2019.01.006

    Article  CAS  Google Scholar 

  79. Hernández Martínez SP, Rivera González TI, Franco Molina MA et al (2019) A novel gold calreticulin nanocomposite based on chitosan for wound healing in a diabetic mice model. Nanomaterials 9:75. https://doi.org/10.3390/nano9010075

    Article  CAS  PubMed Central  Google Scholar 

  80. Mandal B, Rameshbabu AP, Soni SR et al (2017) In situ silver nanowire deposited cross-linked carboxymethyl cellulose: a potential transdermal anticancer drug carrier. ACS Appl Mater Interfaces 9:36583–36595. https://doi.org/10.1021/acsami.7b10716

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to authors whose work could not be included in this review due to space restrictions. Support from the Ministry of Science, Innovation and Universities of Spain is acknowledged through the MANA project CTQ2017-83961-R and JEANS project CTQ2017-92264-EXP. J. J. G.-C. acknowledges the Ministry of Science, Innovation and Universities of Spain for a “Ramon y Cajal” contract (#RyC-2014-14956). M. C. thanks the “Plan Propio de Investigación” from the Universidad de Córdoba (UCO) and the “Programa Operativo de fondos FEDER Andalucía” for its financial support through both postdoctoral contracts (Modality 5.2.A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan J. Giner-Casares or Manuel Cano.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Surface-modified Nanobiomaterials for Electrochemical and Biomedicine Applications”; edited by “Alain R. Puente-Santiago, Daily Rodríguez-Padrón”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alba-Molina, D., Giner-Casares, J.J. & Cano, M. Bioconjugated Plasmonic Nanoparticles for Enhanced Skin Penetration. Top Curr Chem (Z) 378, 8 (2020). https://doi.org/10.1007/s41061-019-0273-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-019-0273-0

Keywords

Navigation