Skip to main content

Advertisement

Log in

Quiescent Discrete Auroral Arcs: A Review of Magnetospheric Generator Mechanisms

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

One of the longstanding questions of space science is: How does the Earth’s magnetosphere generate auroral arcs? A related question is: What form of energy is extracted from the magnetosphere to drive auroral arcs? Not knowing the answers to these questions hinders our ability to determine the impact of auroral arcs on the magnetospheric system. Magnetospheric mechanisms for driving quiescent auroral arcs are reviewed. Two types of quiescent arcs are (1) low-latitude non-Alfvénic (growth-phase) arcs magnetically connecting to the electron plasma sheet and (2) high-latitude arcs magnetically connecting near the plasma-sheet boundary layer. The reviews of the magnetospheric generator mechanisms are separated for the two types of quiescent arcs. The driving of auroral-arc currents in large-scale computer simulations is examined. Predicted observables in the magnetosphere and in the ionosphere are compiled for the various generator mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • S.-I. Akasofu, The development of the auroral substorm. Planet. Space Sci. 12, 273 (1964)

    ADS  Google Scholar 

  • S.-I. Akasofu, Recent progress in studies of DMSP auroral photographs. Space Sci. Rev. 19, 169 (1976)

    ADS  Google Scholar 

  • V. Angelopoulos, C.F. Kennell, F.V. Coroniti, R. Pellat, H.E. Spence, M.G. Kivelson, R.J. Walker, W. Baumjohann, W.C. Feldman, J.T. Gosling, C.T. Russell, Characteristics of ion flow in the quiet state of the inner plasma sheet. Geophys. Res. Lett. 20, 1711 (1993)

    ADS  Google Scholar 

  • V. Angelopoulos, C.F. Kennell, F.V. Coroniti, R. Pellat, M.G. Kivelson, R.J. Walker, C.T. Russell, W. Baumjohann, W.C. Feldman, J.T. Gosling, Statistical characteristics of bursty bulk flow events. J. Geophys. Res. 99, 21257 (1994)

    ADS  Google Scholar 

  • E.E. Antonova, M.V. Stepanova, M.V. Teltzov, B.A. Tverskoy, Multiple inverted-V structures and hot plasma pressure gradient mechanism of plasma stratification. J. Geophys. Res. 103, 9317 (1998)

    ADS  Google Scholar 

  • G. Atkinson, Auroral arcs: result of the interaction of a dynamic magnetosphere with the ionosphere. J. Geophys. Res. 75, 4746 (1970)

    ADS  Google Scholar 

  • G. Atkinson, Review of auroral currents and auroral arcs. J. Geomagn. Geoelectr. 30, 435 (1978)

    ADS  Google Scholar 

  • G. Atkinson, Mechanism by which merging at \(X\) lines causes discrete auroral arcs. J. Geophys. Res. 97, 1337 (1992)

    ADS  Google Scholar 

  • G. Atkinson, F. Creutzberg, R.L. Gattinger, J.S. Murphree, Interpretation of complicated discrete arc structure and behavior in terms of multiple \(X\) lines. J. Geophys. Res. 94, 5292 (1989)

    ADS  Google Scholar 

  • N.G. Aunai, G. Belmont, R. Smets, Energy budgets in collisionless magnetic reconnection: ion heating and bulk acceleration. Phys. Plasmas 18, 122901 (2011)

    ADS  Google Scholar 

  • R. Bingham, D.A. Bryant, D.S. Hall, A wave model for the aurora. Geophys. Res. Lett. 11, 327 (1984)

    ADS  Google Scholar 

  • R. Bingham, D.A. Bryant, D.S. Hall, Auroral electron acceleration by lower-hybrid waves. Ann. Geophys. 6, 159 (1988)

    ADS  Google Scholar 

  • J. Birn, Three-dimensional equilibria for the extended magnetotail and the generation of field-aligned current sheets. J. Geophys. Res. 94, 252 (1989)

    ADS  Google Scholar 

  • J. Birn, M. Hesse, The substorm current wedge and field-aligned currents in MHD simulations of magnetotail reconnection. J. Geophys. Res. 96, 1611 (1991)

    ADS  Google Scholar 

  • J. Birn, M. Hesse, Energy release and conversion by reconnection in the magnetotail. Ann. Geophys. 23, 3365 (2005)

    ADS  Google Scholar 

  • J. Birn, M. Hesse, The substorm current wedge in MHD simulations. J. Geophys. Res. 118, 3364 (2013)

    Google Scholar 

  • J. Birn, M. Hesse, The substorm current wedge: further insights from MHD simulations. J. Geophys. Res. Space Phys. 119, 3503 (2014)

    ADS  Google Scholar 

  • J. Birn, M. Hesse, G. Haerendel, W. Baumjohann, K. Shiokawa, Flow braking and the substorm current wedge. J. Geophys. Res. 104, 19895 (1999)

    ADS  Google Scholar 

  • J. Birn, J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, P.L. Pritchett, Geospace Environment Modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715 (2001)

    ADS  Google Scholar 

  • J. Birn, K. Schindler, M. Hesse, Thin electron current sheets and their relation to auroral potentials. J. Geophys. Res. 109, A02217 (2004a)

    ADS  Google Scholar 

  • J. Birn, J. Raeder, Y.L. Wang, R.A. Wolf, M. Hesse, On the propagation of bubbles in the geomagnetic tail. Ann. Geophys. 22, 1773 (2004b)

    ADS  Google Scholar 

  • J. Birn, R. Nakamura, E. Panov, M. Hesse, Bursty bulk flows and dipolarization in MHD simulations of magnetotail reconnection. J. Geophys. Res. 116, A01210 (2011)

    ADS  Google Scholar 

  • J. Birn, K. Schindler, M. Hesse, Magnetotail aurora connection: the role of thin current sheets. Geophys. Monogr. Ser. 197, 337 (2012)

    Google Scholar 

  • J. Birn, M. Hesse, A. Runov, X.-Z. Zhou, Ion beams in the plasma sheet boundary layer. J. Geophys. Res. 120, 7522 (2015)

    Google Scholar 

  • M.G. Bobra, S. Ilonidis, Predicting coronal mass ejections using machine learning methods. Astrophys. J. 821, 127 (2016)

    ADS  Google Scholar 

  • J.E. Borovsky, Auroral arc thicknesses as predicted by various theories. J. Geophys. Res. 98, 6101 (1993)

    ADS  Google Scholar 

  • J.E. Borovsky, The Magnetosphere-Ionosphere Observatory (MIO). Los Alamos National Laboratory (2002). https://www.lanl.gov/csse/MIOwriteup.pdf

  • J.E. Borovsky, J. Birn, The solar-wind electric field does not control the dayside reconnection rate. J. Geophys. Res. 119, 751 (2014)

    Google Scholar 

  • J.E. Borovsky, J.L. Delzanno, Space active experiments: the future. Front. Astron. Space Sci. 6, 31 (2019)

    ADS  Google Scholar 

  • J.E. Borovsky, H.O. Funsten, MHD turbulence in the Earth’s plasma sheet: dynamics, dissipation, and driving. J. Geophys. Res. 108, 1284 (2003)

    Google Scholar 

  • J.E. Borovsky, J.A. Valdivia, The Earth’s magnetosphere: a systems science overview and assessment. Surv. Geophys. 39, 817 (2018)

    ADS  Google Scholar 

  • J.E. Borovsky, R.C. Elphic, H.O. Funsten, M.F. Thomsen, The Earth’s plasma sheet as a laboratory for turbulence in high-beta MHD. J. Plasma Phys. 57, 1 (1997)

    ADS  Google Scholar 

  • J.E. Borovsky, M.F. Thomsen, R.C. Elphic, The driving of the plasma sheet by the solar wind. J. Geophys. Res. 103, 17617 (1998a)

    ADS  Google Scholar 

  • J.E. Borovsky, M.F. Thomsen, D.J. McComas, T.E. Cayton, D.J. Knipp, Magnetospheric dynamics and mass flow during the November-1993 storm. J. Geophys. Res. 103, 26373 (1998b)

    ADS  Google Scholar 

  • J.E. Borovsky, R.A. Greenwald, T.J. Hallinan, J.L. Horwitz, M.C. Kelley, D.M. Klumpar, R.L. Lysak, B.H. Mauk, T.M. Moore, G.D. Reeves, H.J. Singer, M.F. Thomsen, The magnetosphere-ionosphere facility: a satellite cluster in geosynchronous orbit connected to ground-based observatories. Eos 79(45), F744 (1998c)

    Google Scholar 

  • J.M. Bosqued, M. Ashour-Abdalla, M. El Alaoui, V. Peroomian, L.M. Zelenyi, C.P. Escoubet, Dispersed ion structures at the poleward edge of the auroral oval: low-altitude observations and numerical modeling. J. Geophys. Res. 98, 19181 (1993)

    ADS  Google Scholar 

  • R. Boström, A model of the auroral electrojets. J. Geophys. Res. 69, 4983 (1964)

    ADS  MATH  Google Scholar 

  • J.S. Boyd, A.E. Belon, G.J. Romick, Latitude and time variations in precipitated electron energy inferred from measurements of auroral heights. J. Geophys. Res. 76, 7694 (1971)

    ADS  Google Scholar 

  • P.C. Brandt, S.Y. Hsieh, R. DeMajistre, D.G. Mitchell, ENA imaging of planetary ring currents. Geophys. Monogr. Ser. 235, 95 (2018)

    Google Scholar 

  • D.A. Bryant, Auroral electron acceleration. Phys. Scr. T 30, 215 (1990)

    ADS  Google Scholar 

  • D.A. Bryant, A.C. Cook, Z.-S. Wang, U. de Angelis, C.H. Perry, Turbulent acceleration of auroral electrons. J. Geophys. Res. 96, 13829 (1991)

    ADS  Google Scholar 

  • J. Buechner, L.M. Zeleny, Deterministic chaos in the dynamics of charged particles near a magnetic field reversal. Phys. Lett. A 118, 395 (1986)

    ADS  Google Scholar 

  • J. Buechner, L.M. Zelenyi, Regular and chaotic charged particle motion in magnetotaillike field reversals. I—Basic theory of trapped motion. J. Geophys. Res. 94, 11,821 (1989)

    ADS  Google Scholar 

  • W.J. Burke, J.S. Machuzak, N.C. Maynard, E.M. Basinski, G.M. Erickson, R.A. Hoffman, J.A. Slavin, W.B. Hanson, Auroral ionospheric signatures of the plasma sheet boundary layer in the evening sector. J. Geophys. Res. 99, 2489 (1994)

    ADS  Google Scholar 

  • E. Camporeale, S. Wing, J. Johnson, Machine Learning Techniques for Space Weather (Elsevier, Amsterdam, 2018)

    Google Scholar 

  • J. Cao, Y. Ma, G. Parks, H. Reme, I. Dandouras, T. Zhang, Kinetic analysis of the energy transport of busty bulk flows in the plasma sheet. J. Geophys. Res. 118, 313 (2013)

    Google Scholar 

  • C.A. Cattell, F.S. Mozer, Electric fields measured by ISEE-1 within and near the neural sheet during quiet and active times. Geophys. Res. Lett. 9, 1041 (1982)

    ADS  Google Scholar 

  • C.C. Chaston, L.M. Peticolas, J.W. Bonnell, C.W. Carlson, R.E. Ergun, J.P. McFadden, R.J. Strangeway, Width and brightness of auroral arcs driven by inertial Alfvén waves. J. Geophys. Res. 198, 1091 (2003)

    Google Scholar 

  • S.-H. Chen, M.G. Kivelson, On ultralow frequency waves in the lobes of the Earth’s magnetotail. J. Geophys. Res. 96, 15711 (1991)

    ADS  Google Scholar 

  • I.J. Cohen et al., Auroral Current and Electrodynamics Structure (ACES) observations of ionospheric feedback in the Alfvén resonator and model responses. J. Geophys. Res. Space Phys. 118, 3288 (2013)

    ADS  Google Scholar 

  • F.V. Coroniti, P.L. Pritchett, The quiet evening auroral arc and the structure of the growth phase near-Earth plasma sheet. J. Geophys. Res. 119, 1827 (2014)

    Google Scholar 

  • National Research Council, Magnetosphere-to-ionosphere field-line tracing technology, in Solar and Space Physics: A Science for a Technological Society (National Academies Press, Washington, D.C., 2012), p. 333

    Google Scholar 

  • J. De Keyser, M. Echim, Auroral and sub-auroral phenomena: an electrostatic picture. Ann. Geophys. 28, 633 (2010)

    ADS  Google Scholar 

  • J. De Keyser, M. Echim, Electric potential differences across auroral generator interfaces. Ann. Geophys. 31, 251 (2013)

    ADS  Google Scholar 

  • J. De Keyser, R. Maggiolo, M. Echim, Monopolar and bipolar auroral electric fields and their effects. Ann. Geophys. 28, 2027 (2010)

    ADS  Google Scholar 

  • G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, B.E. Gilchrist, E. Sanchez, Can an electron gun solve the outstanding problem of magnetosphere-ionosphere connectivity? J. Geophys. Res. 121, 6769 (2016)

    Google Scholar 

  • I.S. Dmitrienko, Formation of accelerated ion flows in Alfvén disturbances of the magnetotail. Geomagn. Aeron. 51, 1160 (2011)

    ADS  Google Scholar 

  • E.F. Donovan, B.J. Jackel, I. Voronkov, T. Sotirelis, F. Creutzberg, N.A. Nicholson, Ground-based optical determination of the b2i boundary: a basis for an optical MT-index. J. Geophys. Res. 108, 1115 (2003)

    Google Scholar 

  • S.D. Drell, H.M. Foley, M.A. Ruderman, Drag and propulsion of large satellites in the ionosphere: an Alfvén propulsion engine in space. Phys. Rev. Lett. 14, 171 (1965)

    ADS  MathSciNet  Google Scholar 

  • J.P. Eastwood, T.D. Phan, J.F. Drake, M.A. Shay, A.L. Borg, B. Lavraud, M.G.G.T. Taylor, Energy partition in magnetic reconnection in Earth’s magnetotail. Phys. Rev. Lett. 110, 225001 (2013)

    ADS  Google Scholar 

  • R.H. Eather, Majestic Lights: The Aurora in Science, History, and the Arts (American Geophysical Union Press, Washington, 1980)

    Google Scholar 

  • Y. Ebihara, T. Tanaka, Substorm simulation: insight into the mechanisms of initial brightening. J. Geophys. Res. Space Phys. 120, 7270 (2015a)

    ADS  Google Scholar 

  • Y. Ebihara, T. Tanaka, Substorm simulation: formation of westward traveling surge. J. Geophys. Res. Space Phys. 120, 10466 (2015b)

    ADS  Google Scholar 

  • Y. Ebihara, T. Tanaka, Substorm simulation: quiet and N-S arcs preceding auroral breakup. J. Geophys. Res. Space Phys. 121, 1201 (2016)

    ADS  Google Scholar 

  • Y. Ebihara, T. Tanaka, Energy flow exciting field-aligned current at substorm expansion onset. J. Geophys. Res. 122, 12288 (2017)

    Google Scholar 

  • M.M. Echim, M. Roth, J. de Keyser, Sheared magnetospheric plasma flows and discrete auroral arcs: a quasi-static coupling model. Ann. Geophys. 25, 317 (2007)

    ADS  Google Scholar 

  • M.M. Echim, M. Roth, J. de Keyser, Ionospheric feedback effects on the quasi-stationary coupling between LLBL and postnoon/evening discrete auroral arcs. Ann. Geophys. 26, 913 (2008)

    ADS  Google Scholar 

  • M.M. Echim, R. Maggiolo, M. Roth, J. De Keyser, A magnetospheric generator driving ion and electron acceleration and electric currents in a discrete auroral arc observed by Cluster and DMSP. Geophys. Res. Lett. 36, L12111 (2009)

    ADS  Google Scholar 

  • M. El-Alaoui, R.L. Richard, M. Ashour-Abdalla, R.J. Walker, M.L. Goldstein, Turbulence in a global magnetohydrodynamic simulation of the Earth’s magnetosphere during northward and southward interplanetary magnetic field. Nonlinear Process. Geophys. 19, 165 (2012)

    ADS  Google Scholar 

  • R.C. Elphic et al., The auroral current circuit and field-aligned currents observed by FAST. Geophys. Res. Lett. 25, 2033 (1998)

    ADS  Google Scholar 

  • R.C. Elphic, M.F. Thomsen, J.E. Borovsky, D.J. McComas, Inner edge of the electron plasma sheet: empirical models of boundary location. J. Geophys. Res. 104, 22679 (1999)

    ADS  Google Scholar 

  • R.D. Elphinstone, D. Hearn, J.S. Murphree, L.L. Cogger, Mapping using the Tsyganenko Long magnetospheric model and its relationship to Viking auroral images. J. Geophys. Res. 96, 1467 (1991)

    ADS  Google Scholar 

  • Y.I. Feldstein, Y.I. Galperin, The auroral luminosity structure in the high-latitude upper atmosphere: its dynamics and relationship to the large-scale structure of the Earth’s magnetosphere. Rev. Geophys. 23, 217 (1985)

    ADS  Google Scholar 

  • S.M. Finnegan, M.E. Koepke, D.J. Knudsen, The dispersive Alfvén wave in the time-stationary limit with a focus on collisional and warm-plasma effects. Phys. Plasmas 15, 052108 (2008)

    ADS  Google Scholar 

  • D. Fyfe, D. Montgomery, G. Joyce, Dissipative, forced turbulence in two-dimensional magnetohydrodynamics. J. Plasma Phys. 17, 369 (1977)

    ADS  Google Scholar 

  • Y.I. Galperin, J.M. Bosqued, Stationary magnetospheric convection on November 24, 1981. 1. A case study of “pressure gradient/minimum-B” auroral arc generation. Ann. Geophys. 17, 358 (1999)

    ADS  Google Scholar 

  • Y.I. Galperin, Y.I. Feldstein, Mapping the precipitation regions to the plasma sheet. J. Geomagn. Geoelectr. 48, 857 (1996)

    ADS  Google Scholar 

  • Y.I. Galperin, A.V. Volosevich, L.M. Zelenyi, Pressure gradient structures in the tail neutral sheet as “roots of the arcs” with some effects of stochasticity. Geophys. Res. Lett. 19, 2163 (1992)

    ADS  Google Scholar 

  • Y.S. Ge, J. Raeder, V. Angelopoulos, M.L. Gilson, A. Runov, Interaction of dipolarization fronts within multiple bursty bulk flows in global MHD simulations of a substorm on 27 February 2009. J. Geophys. Res. 116, A00123 (2011)

    Google Scholar 

  • D.M. Gillies, D. Knudsen, E. Donovan, B. Jackel, R. Gillies, E. Spanswick, Identifying the 630 nm auroral arc emission height: a comparison of the triangulation, FAC profile, and electron density methods. J. Geophys. Res. 122, 8181 (2017)

    Google Scholar 

  • D.M. Gillies, D. Knudsen, R. Rankin, S. Milan, E. Donovan, A statistical survey of the 630.0-nm optical signature of periodic auroral arcs resulting from magnetospheric field line resonances. Geophys. Res. Lett. 45, 4648 (2018)

    ADS  Google Scholar 

  • C.K. Goertz, Alfvén waves on auroral field lines. Planet. Space Sci. 32, 1387 (1984)

    ADS  Google Scholar 

  • C.K. Goertz, R.W. Boswell, Magnetosphere-ionosphere coupling. J. Geophys. Res. 84, 7239 (1979)

    ADS  Google Scholar 

  • H. Grad, Some new variational properties of hydromagnetic equilibria. Phys. Fluids 7, 1283 (1964)

    ADS  MathSciNet  Google Scholar 

  • E.E. Grigorenko, J.-A. Sauvaud, L.M. Zelenyi, Spatial-temporal characteristics of ion beamlets in the plasma sheet boundary layer of magnetotail. J. Geophys. Res. 112, A05218 (2007)

    ADS  Google Scholar 

  • D.A. Gurnett, C.K. Goertz, Multiple Alfvén wave reflections excited by Io: origin of the Jovain decametric arcs. J. Geophys. Res. 86, 717 (1981)

    ADS  Google Scholar 

  • M.S. Gussenhoven, D.A. Hardy, W.J. Burke, DMSP/F2 electron observations of equatorward auroral boundaries an their relationship to magnetospheric electric fields. J. Geophys. Res. 86, 768 (1981)

    ADS  Google Scholar 

  • M.S. Gussenhoven, D.A. Hardy, N. Heinemann, Systematics of the equatorward diffuse auroral boundary. J. Geophys. Res. 88, 5692 (1983)

    ADS  Google Scholar 

  • G. Haerendel, Acceleration from field-aligned potential drops. Astrophys. J. Suppl. Ser. 90, 765 (1994)

    ADS  Google Scholar 

  • G. Haerendel, Outstanding issues in understanding the dynamics of the inner plasma sheet and ring current during storms and substorms. Adv. Space Res. 25, 2379 (2000)

    ADS  Google Scholar 

  • G. Haerendel, Auroral arcs as sites of magnetic stress release. J. Geophys. Res. 112, A09214 (2007)

    ADS  Google Scholar 

  • G. Haerendel, Auroral arcs as current transformers. J. Geophys. Res. 113, A07205 (2008)

    ADS  Google Scholar 

  • G. Haerendel, Poleward arcs of the auroral oval during substorms and the inner edge of the plasma sheet. J. Geophys. Res. 114, A06214 (2009)

    ADS  Google Scholar 

  • G. Haerendel, Equatorward moving arcs and substorm onset. J. Geophys. Res. 115, A07212 (2010)

    ADS  Google Scholar 

  • G. Haerendel, Six auroral generators: a review. J. Geophys. Res. 116, A00K05 (2011)

    ADS  Google Scholar 

  • G. Haerendel, A tool for characterizing and evaluating Type II auroral arcs. J. Geophys. Res. 117, A06214 (2012a)

    ADS  Google Scholar 

  • G. Haerendel, Auroral generators: a survey. Geophys. Monogr. Ser. 197, 347 (2012b)

    Google Scholar 

  • G. Haerendel, S. Buchert, C. La Hoz, B. Raaf, E. Rieger, On the proper motion of auroral arcs. J. Geophys. Res. 98, 6087 (1993)

    ADS  Google Scholar 

  • T.J. Hallinan, The Distribution of Vorticity in Auroral Arcs. Geophys. Res. Monogr., vol. 25, (1981), p. 42

    Google Scholar 

  • M. Hamrin, P. Norqvist, O. Marghitu, S. Buchert, B. Klecker, L.M. Kistler, I. Dandouras, Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet. Ann. Geophys. 27, 4131 (2009)

    ADS  Google Scholar 

  • M. Hamrin, O. Marghitu, P. Norqvist, S. Buchert, M. Andre, B. Klecker, L.M. Kistler, I. Danouras, Energy conversion regions as observed by Cluster in the plasma sheet. J. Geophys. Res. 116, A00K8 (2011)

    Google Scholar 

  • P.J. Hanson, B.G. Harrold, Parallel inhomogeneity and the Alfvén resonance 1. Open field lines. J. Geophys. Res. 99, 2429 (1994)

    ADS  Google Scholar 

  • B.G. Harrold, C.K. Goertz, R.A. Smith, P.J. Hansen, Resonant Alfvén wave heating of the plasma sheet boundary layer. J. Geophys. Res. 95, 15039 (1990)

    ADS  Google Scholar 

  • A. Hasegawa, Particle acceleration by MHD surface wave and formation of aurora. J. Geophys. Res. 81, 5083 (1976)

    ADS  Google Scholar 

  • A. Hasegawa, T. Sato, Generation of field aligned current during substorm, in Dynamics of the Magnetosphere, ed. by S.-I. Akasofu (D. Reidel Publishing, Dordrecht, 1979), p. 529

    Google Scholar 

  • M. Henderson, Observational evidence for an inside-out substorm onset scenario. Ann. Geophys. 27, 2120 (2009)

    ADS  Google Scholar 

  • M. Hesse, D. Winske, M. Kuznetsova, J. Birn, K. Schindler, Hybrid modeling of the formation of thin current sheets in magnetotail configurations. J. Geomagn. Geoelectr. 48, 749 (1996)

    ADS  Google Scholar 

  • M. Hesse, D. Winske, J. Birn, On the ion-scale structure of thin current sheets in the magnetotail. Phys. Scr. T 74, 63 (1998)

    ADS  Google Scholar 

  • Y. Hiraki, T. Watanabe, Feedback instability analysis for dipole configuration with ionospheric and magnetospheric cavities. J. Geophys. Res. 116, A11220 (2011)

    ADS  Google Scholar 

  • Y. Hiraki, T.-H. Watanabe, Hybrid Alfvén resonant mode generation in the magnetosphere-ionosphere coupling system. Phys. Plasmas 19, 102904 (2012)

    ADS  Google Scholar 

  • M.-S. Hsieh, A. Otto, The influence of magnetic flux depletion on the magnetotail and auroral morphology during the substorm growth phase. J. Geophys. Res. 119, 3430 (2014)

    Google Scholar 

  • T. Iijima, T.A. Potemra, Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res. 83, 599 (1978)

    ADS  Google Scholar 

  • N. Jia, A.V. Streltsov, Ionospheric feedback instability and active discrete auroral forms. J. Geophys. Res. 119, 2243 (2014)

    Google Scholar 

  • F. Jiang, M.G. Kivelson, R.J. Strangeway, K.K. Khurana, R. Walker, Ionospheric flow shear associated with the preexisting auroral arc: a statistical study from the FAST spacecraft data. J. Geophys. Res. Space Phys. 120, 5194 (2015)

    ADS  Google Scholar 

  • A. Kadokura, A.-S. Yukimatu, M. Ejiri, T. Oguti, M. Pinnock, M.R. Hairston, Detailed analysis of a substorm event on 6 and 7 June 1989, 1, growth phase evolution of nightside auroral activities and ionospheric convection toward expansion phase onset. J. Geophys. Res. 107, 1479 (2002)

    Google Scholar 

  • J. Kan, Energization of auroral electrons by electrostatic shock-waves. J. Geophys. Res. 80, 2089 (1975)

    ADS  Google Scholar 

  • J.R. Kan, S.-I. Akasofu, Energy source and mechanisms for accelerating the electrons and driving the field-aligned currents for the discrete auroral arc. J. Geophys. Res. 81, 5123 (1976)

    ADS  Google Scholar 

  • T. Karlsson, L. Andersson, M. Gillies, K. Lynch, O. Marghitu, N. Partamies, N. Sivadas, J. Wu, Quiet, discrete arcs—observations. Space Sci. Rev. (2019, submitted)

  • A. Keiling, Alfvén waves and their roles in the dynamics of the Earth’s magnetotail: a review. Space Sci. Rev. 142, 73 (2009)

    ADS  Google Scholar 

  • A. Keiling, G.K. Parks, H. Reme, I. Dandouras, M. Wilber, L. Distler, C. Owen, A.N. Fazakerley, E. Lucek, M. Maksimovic, N. Cornilleau-Wehrlin, Energy-dispersed ions in the plasma sheet boundary layer and associated phenomena: ion heating, electron acceleration, Alfvén waves, broadband waves, perpendicular electric field spikes, and auroral emissions. Ann. Geophys. 24, 2685 (2006)

    ADS  Google Scholar 

  • A. Keiling et al., Substorm current wedge driven by plasma flow vortices: THEMIS observations. J. Geophys. Res. 114, A00C22 (2009)

    Google Scholar 

  • M.C. Kelley, C.W. Carlson, Observations of intense velocity shear and associated electrostatic waves near an auroral arc. J. Geophys. Res. 82, 2343 (1977)

    ADS  Google Scholar 

  • J.S. Kim, R.A. Volkman, Thickness of zenithal auroral arc over Fort Churchill, Canada. J. Geophys. Res. 68, 3187 (1963)

    ADS  Google Scholar 

  • C.A. Kletzing, Electron acceleration by kinetic Alfvén waves. J. Geophys. Res. 99, 11095 (1994)

    ADS  Google Scholar 

  • L. Knight, Parallel electric fields. Planet. Space Sci. 21, 741 (1973)

    ADS  Google Scholar 

  • D.J. Knudsen, Spatial modulation of electron energy and density by nonlinear stationary inertial Alfvén waves. J. Geophys. Res. 101, 10761 (1996)

    ADS  Google Scholar 

  • D.J. Knudsen, E.F. Donovan, L.L. Cogger, B. Jackel, W.D. Shaw, Width and structure of mesoscale optical auroral arcs. Geophys. Res. Lett. 28, 705 (2001)

    ADS  Google Scholar 

  • D.J. Knudsen, J.K. Burchill, E.F. Donovan, V.M. Uritsky, Advection of magnetic energy as a source of power for auroral arcs. Geophys. Res. Lett. 38, L24103 (2011)

    ADS  Google Scholar 

  • G. Kremser, A. Korth, S.L. Ullaland, S. Perraut, A. Roux, A. Pedersen, R. Schmidt, P. Tanskanen, Field-aligned beams of energetic electrons (\(16~\mbox{keV} < E < 80~\mbox{keV}\)) observed at geosynchronous orbit at substorm onset. J. Geophys. Res. 93, 14453 (1988)

    ADS  Google Scholar 

  • M. Kubyshkina, V. Sergeev, N. Tsyganenko, V. Angelopoulos, A. Runov, E. Donovan, H. Singer, U. Auster, W. Baumjohann, Time-dependent magnetospheric configuration and breakup mapping during a substorm. J. Geophys. Res. 116, A00I27 (2011)

    ADS  Google Scholar 

  • J. Lemaire, M. Scherer, Plasma sheet particle precipitation: a kinetic model. Planet. Space Sci. 21, 281 (1973)

    ADS  Google Scholar 

  • J. Liang, E.F. Donovan, W.W. Liu, B. Jackel, M. Syrjäsuo, S.B. Mende, H.U. Frey, V. Angelopoulos, M. Connors, Intensification of preexisting auroral arc at substorm expansion phase onset: wave-like disruption during the first tens of seconds. Geophys. Res. Lett. 35, L17S19 (2008)

    Google Scholar 

  • J. Liang, Y. Shen, D. Knudsen, E. Spanswick, J. Burchill, E. Donovan, e-POP and red line optical observations of Alfvénic aurora. J. Geophys. Res. 124, 4672 (2019)

    Google Scholar 

  • J. Liu, V. Angelopoulos, A. Runov, X.-Z. Zhou, On the current sheets surrounding dipolarizing flux bundles in the magnetotail: the case for wedgelets. J. Geophys. Res. Space Phys. 118, 2000 (2013)

    ADS  Google Scholar 

  • W. Lotko, C.G. Schultz, Internal shear layers in auroral dynamics. Geophys. Monogr. Ser. 44, 121 (1988)

    Google Scholar 

  • W. Lotko, B.U.O. Sonnerup, R.L. Lysak, Nonsteady boundary layer flow including ionospheric drag and parallel electric fields. J. Geophys. Res. 92, 8635 (1987)

    ADS  Google Scholar 

  • G. Lu, M. Brittnacher, G. Parks, D. Lummerzheim, On the magnetospheric source regions of substorm-related field-aligned currents and auroral precipitation. J. Geophys. Res. 105, 18483 (2000)

    ADS  Google Scholar 

  • J.Y. Lu, R. Rankin, R. Marchand, I.J. Rae, W. Wang, S.C. Solomon, J. Lei, Electrodynamics of magnetosphere-ionosphere coupling and feedback on magnetospheric field line resonances. J. Geophys. Res. 112, A10219 (2007)

    ADS  Google Scholar 

  • J.Y. Lu, W. Wang, R. Rankin, R. Marchand, J. Lei, S.C. Solomon, I.J. Rae, J.-S. Wang, G.-M. Le, Electromagnetic waves generated by ionospheric feedback instability. J. Geophys. Res. 113, A05206 (2008)

    ADS  Google Scholar 

  • R. Lundin, D.S. Evans, Boundary layer plasmas as a source for high-latitude, early afternoon, auroral arcs. Planet. Space Sci. 32, 1389 (1985)

    ADS  Google Scholar 

  • R. Lundin, I. Sandahl, Some characteristics of the parallel electric field acceleration of electrons over discrete auroral arcs as observed from two rocket flights. Tech. Rep. SP-135, European Space Agency (1978)

  • L.R. Lyons, Generation of large-scale regions of auroral currents, electric potentials and precipitation by the divergence of the convection electric field. J. Geophys. Res. 85, 17 (1980)

    ADS  Google Scholar 

  • L.R. Lyons, Discrete aurora as the direct result of an inferred high-altitude generating potential distribution. J. Geophys. Res. 86, 1 (1981)

    ADS  Google Scholar 

  • L.R. Lyons, D.S. Evans, An association between discrete aurora and energetic particle boundaries. J. Geophys. Res. 89, 2395 (1984)

    ADS  Google Scholar 

  • L.R. Lyons, T.W. Speiser, Evidence for current sheet acceleration in the geomagnetic tail. J. Geophys. Res. 87, 2276 (1982)

    ADS  Google Scholar 

  • L.R. Lyons, D.S. Evans, R. Lundin, An observed relation between magnetic field aligned electric fields and downward electron energy fluxes in the vicinity of auroral forms. J. Geophys. Res. 84, 457 (1979)

    ADS  Google Scholar 

  • R.L. Lysak, Auroral electrodynamics with current and Voltage generators. J. Geophys. Res. 90, 4178 (1985)

    ADS  Google Scholar 

  • R.L. Lysak, Feedback instability of the ionospheric resonant cavity. J. Geophys. Res. 96, 1553–1568 (1991)

    ADS  Google Scholar 

  • R.L. Lysak, Y. Song, Energetics of the ionospheric feedback interaction. J. Geophys. Res. 107, 1160 (2002)

    Google Scholar 

  • R.L. Lysak, Y. Song, Development of parallel electric fields at the plasma sheet boundary layer. J. Geophys. Res. 116, A00K14 (2011)

    ADS  Google Scholar 

  • R.L. Lysak, Y. Song, T.W. Jones, Propagation of Alfvén waves in the magnetotail during substorms. Ann. Geophys. 27, 2237 (2009)

    ADS  Google Scholar 

  • R. Maggiolo, M. Echim, C.S. Wedlund, Y. Zhang, D. Fontaine, G. Lointier, J.-G. Trotignon, Polar cap arcs from the magnetosphere to the ionosphere: kinetic modelling and observations by Cluster and TIMED. Ann. Geophys. 30, 283 (2012)

    ADS  Google Scholar 

  • A.J. Mallinckrodt, C.W. Carlson, Relations between transverse electric fields and field-aligned currents. J. Geophys. Res. 83, 1426 (1978)

    ADS  Google Scholar 

  • Y.P. Maltsev, W.B. Lyatsky, A.M. Lyatskaya, Currents over the Auroral Arc. Planet. Space Sci. 25, 53 (1977)

    ADS  Google Scholar 

  • O. Marghitu, B. Klecker, G. Haerendel, J. McFadden, ALADYN: a method to investigate auroral arc electrodynamics from satellite data. J. Geophys. Res. 109(A11), 305 (2004)

    Google Scholar 

  • O. Marghitu, T. Karlsson, B. Klecker, G. Haerendel, J. McFadden, Auroral arc and oval electrodynamics in the Harang region. J. Geophys. Res. 114, A03214 (2009)

    ADS  Google Scholar 

  • O. Marghitu, M. Hamrin, B. Klecker, K. Ronnmak, S. Buchert, L.M. Kistler, M. Andre, H. Reme, Cluster observations of energy conversion regions in the plasma sheet, in The Cluster Active Archive, ed. by H. Laakso et al. (Springer, Berlin, 2010)

    Google Scholar 

  • O. Marghitu, C. Bunescu, T. Karlsson, B. Klecker, On the divergence of the auroral electrojets. J. Geophys. Res. 116, A00K17 (2011)

    Google Scholar 

  • G. Marklund, Auoral arc classification scheme based on the observed arc-associated electric field pattern. Planet. Space Sci. 32, 193 (1984)

    ADS  Google Scholar 

  • G.T. Marklund et al., Cluster multipoint study of the acceleration potential pattern and electrodynamics of an auroral surge and its associated horn arc. J. Geophys. Res. 117, A10223 (2012)

    ADS  Google Scholar 

  • B.H. Mauk, C.-I. Meng, The aurora and middle magnetospheric processes, in Auroral Physics, ed. by C.-I. Meng, M.J. Rycroft, L.A. Frank (Cambridge Press, Cambridge, 1991), p. 223

    Google Scholar 

  • R.M. McGranaghan, A.J. Manucci, B. Wilson, C.A. Mattmann, R. Chadwick, New capabilities for prediction of high-latitude ionospheric scintillation: a novel approach with machine learning. Space Weather 16, 1817 (2018)

    ADS  Google Scholar 

  • C.E. McIlwain, Auroral electron beams near the magnetic equator, in Physics of the Hot Plasma in the Magnetosphere, ed. by B. Hultqvist, L. Stenflo (Plenum, New York, 1975), p. 91

    Google Scholar 

  • R.L. McPherron, C.T. Russell, M.P. Aubry, Satellite studies of magnetospheric substorms on August 15, 1968, 9, phenomenological model for substorms. J. Geophys. Res. 78, 3131 (1973)

    ADS  Google Scholar 

  • R.L. McPherron, A. Nishida, C.T. Russell, Is near-Earth current sheet thinning the cause of substorm onset? in Quantitative Modeling of Magnetosphere-Ionosphere Coupling Processes, ed. by Y. Kamide, R.A. Wolf (Kyoto Sangyo University, Kyoto, 1987), p. 252

    Google Scholar 

  • C.-I. Meng, B. Mauk, C.E. McIlwain, Electron precipitation of evening diffuse aurora and its conjugate electron fluxes near the magnetospheric equator. J. Geophys. Res. 84, 2545 (1979)

    ADS  Google Scholar 

  • A. Miura, T. Sato, Numerical simulation of global formation of auroral arcs. J. Geophys. Res. 85, 73 (1980)

    ADS  Google Scholar 

  • T. Motoba, K. Hosokawa, A. Kadodura, N. Sato, Magnetic conjugacy of northern and southern auroral beads. Geophys. Res. Lett. 39, L08101 (2012)

    ADS  Google Scholar 

  • T. Motoba, S. Ohtani, B.J. Anderson, H. Korth, D. Mitchell, L.J. Lanzerotti, K. Shiokawa, M. Connors, C.A. Kletzing, G.D. Reeves, On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations. J. Geophys. Res. 120, 8707 (2015)

    Google Scholar 

  • NASA, Sun-Earth Connection Roadmap 2003–2028, p. 92, http://www.dept.aoe.vt.edu/~cdhall/courses/aoe4065/NASADesignSPs/SEC_2003_roadmap_full.pdf (2003)

  • P.T. Newell, J.W. Gjerloev, SuperMAG-based partial ring current indices. J. Geophys. Res. 117, A05215 (2012)

    ADS  Google Scholar 

  • P.T. Newell, C.-I. Meng, K.M. Lyons, Suppression of discrete aurorae by sunlight. Nature 381, 766 (1996a)

    ADS  Google Scholar 

  • P.T. Newell, Y.I. Feldstein, Y.I. Galperin, C.-I. Meng, Morphology of nightside precipitation. J. Geophys. Res. 101, 10,737 (1996b)

    ADS  Google Scholar 

  • P.T. Newell, T. Sotirelis, S. Wing, Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J. Geophys. Res. 114, A09207 (2009)

    ADS  Google Scholar 

  • T.G. Onsager, T. Mukai, The structure of the plasma sheet and its boundary layers. J. Geomagn. Geoelectr. 48, 687 (1996)

    ADS  Google Scholar 

  • T.G. Onsager, M.F. Thomsen, R.C. Elphic, J.T. Gosling, Model of electron and ion distributions in the plasma sheet boundary layer. J. Geophys. Res. 96, 20999 (1991)

    ADS  Google Scholar 

  • N. Partamies, M. Syrjasuo, E. Donovan, M. Conners, D. Charrois, D. Knudsen, Z. Kryzanowsky, Observations of the auroral width spectrum at kilometer-scale size. Ann. Geophys. 29, 711 (2010)

    ADS  Google Scholar 

  • G. Paschmann, S. Haaland, R. Treumann, Auroral Plasma Physics. Space Sci. Rev., vol. 103 (2002)

    Google Scholar 

  • A. Pedersen, C.A. Cattell, C.-G. Falthammar, K. Knott, P.-A. Lindqvist, R.H. Manka, F.S. Mozer, Electric fields I the plasma sheet and plasma sheet boundary layer. J. Geophys. Res. 90, 1231 (1985)

    ADS  Google Scholar 

  • A. Pouquet, On two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 88, 1 (1978)

    ADS  MATH  Google Scholar 

  • P.L. Pritchett, Geospace Environment Modeling magnetic reconnection challenge: simulations with a full particle electromagnetic code. J. Geophys. Res. 106, 3783 (2001)

    ADS  Google Scholar 

  • P.L. Pritchett, F.V. Coroniti, Convection and the formation of thin current sheets in the near-Earth plasma sheet. Geophys. Res. Lett. 21, 1587 (1994)

    ADS  Google Scholar 

  • T.I. Pulkkinen, H.E.J. Koskinen, R.J. Pellinen, Mapping of auroral arcs during substorm growth phase. J. Geophys. Res. 96, 21087 (1991)

    ADS  Google Scholar 

  • T. Pulkkinen, D.N. Baker, D.G. Mitchell, R.L. McPherron, C.Y. Huang, L.A. Frank, Thin current sheets in the magnetotail during substorms: CDAW6 revisited. J. Geophys. Res. 99, 5793 (1994)

    ADS  Google Scholar 

  • J. Raeder, P. Zhu, Y. Ge, G. Siscoe, Auroral signatures of ballooning mode near substorm onset: open geospace general circulation model simulations. Geophys. Monogr. Ser. 197, 389 (2012)

    Google Scholar 

  • H. Rème, C. Aoustin, J.M. Bosqued, I. Dandouras, B. Lavraud, J.A. Sauvaud et al., First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster Ion Spectrometry (CIS) experiment. Ann. Geophys. 19, 1303 (2001)

    ADS  Google Scholar 

  • G. Rostoker, On the place of the pseudo-breakup in a magnetospheric substorm. Geophys. Res. Lett. 25, 217 (1998)

    ADS  Google Scholar 

  • M. Roth, D.S. Evans, J. Lemaire, Theoretical structure of a magnetospheric plasma boundary: application to the formation of discrete auroral arcs. J. Geophys. Res. 98, 11411 (1993)

    ADS  Google Scholar 

  • M. Roth, J. De Keyser, M. Kuznetsova, Vlasov theory of the equilibrium structure of tangential discontinuities in space plasmas. Space Sci. Rev. 76, 251 (1996)

    ADS  Google Scholar 

  • M. Roy, G.S. Lakhina, Lower hybrid wave model for aurora. Astrophys. Space Sci. 117, 111 (1985)

    ADS  Google Scholar 

  • M.S. Ruderman, A.N. Wright, Excitation of resonant Alfvén waves in the magnetosphere by negative energy surface waves on the magnetopause. J. Geophys. Res. 103, 26573 (1998)

    ADS  Google Scholar 

  • V. Safargaleev, W. Lyatsky, V. Tagirov, Luminosity variations in several parallel auroral arcs before auroral breakup. Ann. Geophys. 15, 959 (1997)

    ADS  Google Scholar 

  • V.V. Safargaleev, A.E. Kozlovsky, S.V. Osipenko, V.R. Tagirov, Azimuthal expansion of high-latitude auroral arcs. Ann. Geophys. 21, 1793 (2003)

    ADS  Google Scholar 

  • J.C. Samson, L.L. Gogger, Q. Pao, Observations of field line resonances, auroral arcs, and auroral vortex structures. J. Geophys. Res. 101, 17373 (1996)

    ADS  Google Scholar 

  • P.B. Sandford, Variations of auroral emissions with time, magnetic activity and the solar cycle. J. Atmos. Terr. Phys. 30, 1921 (1968)

    ADS  Google Scholar 

  • J. Sanny, R.L. McPherron, C.T. Russell, D.N. Baker, T.I. Pulkkinen, A. Nishida, Growth-phase thinning of the near-Earth current sheet during the CDAW-6 substorm. J. Geophys. Res. 99, 5805 (1994)

    ADS  Google Scholar 

  • T. Sato, A theory of quiet auroral arcs. J. Geophys. Res. 83, 1042 (1978)

    ADS  Google Scholar 

  • T. Sato, T.E. Holzer, Quiet auroral arcs and electrodynamic coupling between the ionosphere and the magnetosphere, 1. J. Geophys. Res. 78, 7314 (1973)

    ADS  Google Scholar 

  • T. Sato, T. Iijima, Primary sources of large-scale Birkeland currents. Space Sci. Rev. 24, 347 (1979)

    ADS  Google Scholar 

  • N. Sato, T. Nagaoka, K. Hashimoto, T. Saemundsson, Conjugacy of isolated auroral arcs and nonconjugate auroral breakups. J. Geophys. Res. 103, 11641 (1998)

    ADS  Google Scholar 

  • K. Schindler, J. Birn, Magnetospheric physics. Phys. Rep. 47, 109 (1978)

    ADS  Google Scholar 

  • K. Schindler, J. Birn, Models of two-dimensional embedded thin current sheets from Vlasov theory. J. Geophys. Res. 107, SMP20 (2002)

    Google Scholar 

  • M. Scholer, A. Otto, Magnetotail reconnection: current diversion and field-aligned currents. Geophys. Res. Lett. 18, 7331 (1991)

    Google Scholar 

  • V.A. Sergeev, E.M. Sazhina, N.A. Tsyganenko, J.A. Lundblad, F. Soraas, Pitch-angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere. Planet. Space Sci. 31, 1147 (1983)

    ADS  Google Scholar 

  • V.A. Sergeev, P. Tanskanen, K. Mursula, A. Korth, R.C. Elphic, Current sheet thickness in the near-Earth plasma sheet during substorm growth phase. J. Geophys. Res. 95, 3819 (1990)

    ADS  Google Scholar 

  • V.A. Sergeev, D.G. Mitchell, C.T. Russell, D.J. Williams, Structure of the tail plasma/current sheet at \(11~\mbox{R}_{\mathrm{E}}\) and its changes in the course of a substorm. J. Geophys. Res. 98, 17345 (1993)

    ADS  Google Scholar 

  • V.A. Sergeev, R.J. Pellinen, T.I. Pulkkinen, Steady magnetospheric convection: a review of recent results. Space Sci. Rev. 75, 551 (1996)

    ADS  Google Scholar 

  • V.A. Sergeev, J.-A. Sauvaud, D. Popescu, R.A. Kovrazhkin, K. Liou, P.T. Newell, M. Brittnacher, G. Parks, R. Nakarnura, T. Mukai, G.D. Reeves, Multiple-spacecraft observation of a narrow transient plasma jet in the Earth’s plasma sheet. Geophys. Res. Lett. 27, 851 (2000)

    ADS  Google Scholar 

  • V. Sergeev, Y. Nishimura, M. Kubyshkina, V. Angelopoulos, R. Nakamura, H. Singer, Magnetospheric location of the equatorial prebreakup arc. J. Geophys. Res. 117, A01212 (2012)

    ADS  Google Scholar 

  • C.E. Seyler, A mathematical model of the structure and evolution of small-scale discrete auroral arcs. J. Geophys. Res. 95, 17199 (1990)

    ADS  Google Scholar 

  • I.G. Shevchenko, V. Sergeev, M. Kubyshkina, V. Angelopoulos, K.H. Glassmeier, H.J. Singer, Estimation of magnetosphere-ionosphere mapping accuracy using isotropy boundary and THEMIS observations. J. Geophys. Res. 115, A11206 (2010)

    ADS  Google Scholar 

  • R.A. Smith, C.K. Goertz, W. Grossmann, Thermal catastrophe in the plasma sheet boundary layer. Geophys. Res. Lett. 13, 1380 (1986)

    ADS  Google Scholar 

  • Y. Song, R.L. Lysak, Turbulent generation of auroral currents and fields—a spectral simulation of two-dimensional MHD turbulence. Geophys. Monogr. Ser. 44, 197 (1988)

    Google Scholar 

  • Y. Song, R.L. Lysak, Displacement current and the generation of parallel electric fields. Phys. Rev. Lett. 96, 145002 (2006)

    ADS  Google Scholar 

  • B.U.O. Sonnerup, Magnetic field reconnection, in Solar System Plasma Physics, vol. III, ed. by L.T. Lanzerotti, C.F. Kennel, E.N. Parker (North-Holland, New York, 1979), p. 45

    Google Scholar 

  • B.U.O. Sonnerup, Theory of the low-latitude boundary layer. J. Geophys. Res. 85, 2017 (1980)

    ADS  Google Scholar 

  • K. Stasiewicz, Generation of magnetic-field aligned currents, parallel electric field, and inverted-V structures by plasma pressure inhomogeneities in the magnetosphere. Planet. Space Sci. 9, 1037 (1985)

    ADS  Google Scholar 

  • M.V. Stepanova, E.E. Antonova, G. Stanev, N. Bankov, N.V. Isaev, Study of stratification of magnetospheric convection using Intercosmos-Bulgaria-1300 electric field observations. Adv. Space Res. 31, 1419 (2003)

    ADS  Google Scholar 

  • M. Stepanova, V. Pinto, J.A. Valdivia, E.E. Antonova, Spatial distribution of the eddy diffusion coefficients in the plasma sheet during quiet time and substorms from THEMIS satellite data. J. Geophys. Res. 116, A00I24 (2011)

    ADS  Google Scholar 

  • R.J. Strangeway, The relationship between magnetospheric processes and auroral field-aligned current morphology. Geophys. Monogr. Ser. 197, 355 (2012)

    Google Scholar 

  • A.V. Streltsov, W. Lotko, Small-scale electric fields in the downward auroral current channels. J. Geophys. Res. 108, 1289 (2003)

    Google Scholar 

  • A.V. Streltsov, W. Lotko, Multiscale electrodynamics of the ionosphere-magnetosphere system. J. Geophys. Res. 109, A09214 (2004)

    ADS  Google Scholar 

  • A.V. Streltsov, W. Lotko, Coupling between density structures, electromagnetic waves and ionospheric feedback in the auroral zone. J. Geophys. Res. 113, A05212 (2008)

    ADS  Google Scholar 

  • A.V. Streltsov, E.V. Mishin, On the existence of ionospheric feedback instability in the Earth’s magnetosphere-ionosphere system. J. Geophys. Res. 123, 8951 (2018)

    Google Scholar 

  • D.W. Swift, An equipotential model for auroral arcs 2. Numerical solutions. J. Geophys. Res. 81, 3935 (1976)

    ADS  Google Scholar 

  • D.W. Swift, Turbulent generation of electrostatic fields in the magnetosphere. J. Geophys. Res. 82, 5143 (1977)

    ADS  Google Scholar 

  • D.W. Swift, Mechanisms for the discrete aurora—a review. Space Sci. Rev. 22, 35 (1978)

    ADS  Google Scholar 

  • D.W. Swift, On the structure of auroral arcs: the results of numerical simulations. J. Geophys. Res. 84, 469 (1979)

    ADS  Google Scholar 

  • D.W. Swift, Numerical simulations of the generation of electrostatic turbulence in the magnetotail. J. Geophys. Res. 86, 2273 (1981)

    ADS  Google Scholar 

  • D. Sydorenko, R. Rankin, The stabilizing effect of collision-induced velocity shear on the ionospheric feedback instability in Earth’s magnetosphere. Geophys. Res. Lett. 44, 6534 (2017)

    ADS  Google Scholar 

  • K. Takahashi, E.W. Hones, ISEE 1 and 2 observations of ion distributions at the plasma sheet-tail lobe boundary. J. Geophys. Res. 93, 8558 (1988)

    ADS  Google Scholar 

  • T. Tanaka, Generation mechanisms for magnetosphere—ionosphere current systems deduced from a three-dimensional MHD simulation of the solar wind-magnetosphere-ionosphere coupling processes. J. Geophys. Res. 100, 12057 (1995)

    ADS  Google Scholar 

  • T. Tanaka, Magnetosphere-ionosphere convection as a compound system. Space Sci. Rev. 133, 1 (2007)

    ADS  Google Scholar 

  • T. Tanaka, Substorm auroral dynamics reproduced by advanced global magnetosphere-ionosphere (M-I) coupling simulation. Geophys. Monogr. Ser. 215, 177 (2015)

    Google Scholar 

  • T. Tanaka, A. Nakamizo, A. Yoshikawa, S. Fujita, H. Shinagawa, H. Shimazu, T. Kikuchi, K.K. Hashimoto, Substorm convection and current system deduced from the global simulation. J. Geophys. Res. 115, A05220 (2010)

    ADS  Google Scholar 

  • T. Tanaka, Y. Ebihara, M. Watanabe, M. Den, S. Fujita, T. Kikuchi, K.K. Hashimoto, R. Kataoka, Global simulation study for the time sequence of events leading to the substorm onset. J. Geophys. Res. Space Phys. 122, 6210 (2017)

    ADS  Google Scholar 

  • T. Terasawa, Hall current effect on tearing mode instability. Geophys. Res. Lett. 10, 475 (1983)

    ADS  Google Scholar 

  • N.A. Tsyganenko, Global quantitative models of the geomagnetic field in the cislunar magnetosphere for different disturbance levels. Planet. Space Sci. 35, 1347 (1987)

    ADS  Google Scholar 

  • B.A. Tverskoi, Magnetosphere-ionosphere interaction and polar auroras. Sov. Phys. Usp. 26, 383 (1983)

    ADS  Google Scholar 

  • E. Tyler, C. Cattell, S. Thaller, J. Wygant, C. Gurgiolo, M. Goldstein, C. Mouikis, Partitioning of integrated energy fluxes in four tail reconnection events observed by Cluster. J. Geophys. Res. Space Phys. 121, 11798 (2016)

    ADS  Google Scholar 

  • M.E. Usanova, I.R. Mann, J. Bortnik, L. Shao, V. Angelopoulos, THEMIS observations of electromagnetic ion cyclotron wave occurrence: dependence on AE, SYMH, and solar wind dynamic pressure. J. Geophys. Res. 117, A10218 (2012)

    ADS  Google Scholar 

  • A. Vaivads, M. Andre, S. Buchert, A.I. Eriksson, A. Olsson, J.-E. Wahlund, P. Janhunen, G. Marklund, L.M. Kistler, C. Mouikis, D. Winningham, A. Fazakerley, P. Newell, What high altitude observations tell us about the auroral acceleration: a Cluster/DMSP conjunction. Geophys. Res. Lett. 30, 1106 (2003)

    ADS  Google Scholar 

  • V.M. Vasyliunas, Mathematical models of magnetospheric convection and its coupling to the ionosphere, in Particles and Fields in the Magnetosphere, ed. by B.M. McCormac (D. Reidel, Dordrecht, 1970), p. 60

    Google Scholar 

  • Z. Voros, W. Baumjohann, R. Nakamura, M. Volwerk, A. Runov, T.L. Zhang, H.U. Eichelberger, R. Treumann, E. Georgescu, A. Balogh, B. Klecker, H. Reme, Magnetic turbulence in the plasma sheet. J. Geophys. Res. 109, A11215 (2004)

    ADS  Google Scholar 

  • Z. Voros, W. Baumjohann, R. Nakamura, A. Runov, M. Volwek, T. Takada, E.A. Lucek, H. Reme, Spatial structure of plasma flow associated turbulence in the Earth’s plasma sheet. Ann. Geophys. 23, 13 (2007)

    ADS  Google Scholar 

  • T.-H. Watanabe, Feedback instability in the magnetosphere-ionosphere coupling system: revisited. Phys. Plasmas 17, 022904 (2010)

    ADS  Google Scholar 

  • T.-H. Watanabe, A unified model of auroral arc growth and electron acceleration in the magnetosphere-ionosphere coupling. Geophys. Res. Lett. 41, 6071 (2014)

    ADS  Google Scholar 

  • T.-H. Watanabe, S. Maeyama, Unstable eigenmodes of the feedback instability with collision-induced velocity shear. Geophys. Res. Lett. 45, 10043 (2018)

    ADS  Google Scholar 

  • K. Watanabe, T. Sato, Geophys. Res. Lett. 15, 717 (1988)

    ADS  Google Scholar 

  • T. Watanabe, H. Oya, K. Watanabe, T. Sato, Comprehensive simulation study on local and global development of auroral arcs and field-aligned potentials. J. Geophys. Res. 98, 21391 (1993)

    ADS  Google Scholar 

  • T. Watanabe, H. Oya, K. Watanabe, T. Sato, Correction. J. Geophys. Res. 99, 6151 (1994)

    ADS  Google Scholar 

  • T.-H. Watanabe et al., Generation of auroral turbulence through the magnetosphere-ionosphere coupling. New J. Phys. 18, 125010 (2016)

    ADS  Google Scholar 

  • C.E.J. Watt, R. Rankin, Do magnetospheric shear Alfvén waves generate sufficient electron energy flux to power the aurora? J. Geophys. Res. 115, A07224 (2010)

    ADS  Google Scholar 

  • C.Q. Wei, B.U.O. Sonnerup, W. Lotko, Model of the low-latitude boundary layer with finite field-aligned potential drops and nonconstant mapping factors. J. Geophys. Res. 101, 21463 (1996)

    ADS  Google Scholar 

  • D.R. Weimer, C.K. Goertz, D.A. Gurnett, N.C. Maynard, J.L. Burch, Auroral zone electric fields from DE 1 and 2 at magnetic conjunctions. J. Geophys. Res. 90, 7479 (1985)

    ADS  Google Scholar 

  • J.M. Weygand, M.G. Kivelson, K.K. Khurana, H.K. Schwartzl, S.M. Thompson, R.L. McPherron, A. Balogh, L.M. Kistler, M.L. Goldstein, J. Borovsky, D.A. Roberts, Plasma sheet turbulence observed by Cluster II. J. Geophys. Res. 110, A01205 (2005)

    ADS  Google Scholar 

  • M. Wiltberger, V. Merkin, J.G. Lyon, S. Ohtani, High-resolution global magnetohydrodynamic simulation of bursty bulk flows. J. Geophys. Res. Space Phys. 120, 4555 (2015)

    ADS  Google Scholar 

  • S. Wing, J.R. Johnson, P.T. Newell, C.-I. Meng, Dawn-dusk asymmetries, ion spectra, and sources in the northward interplanetary magnetic field plasma sheet. J. Geophys. Res. 110, A08205 (2005)

    ADS  Google Scholar 

  • S. Wing, S. Ohtani, J.R. Johnson, M. Echim, P.T. Newell, T. Higuchi, G. Ueno, G.R. Wilson, Solar wind driving of dayside field-aligned currents. J. Geophys. Res. 116, A08208 (2011)

    ADS  Google Scholar 

  • A.N. Wright, W. Allan, Simulations of Alfvén waves in the geomagnetic tail and their auroral signatures. J. Geophys. Res. 113, A02206 (2008)

    ADS  Google Scholar 

  • J. Wu, D.J. Knudsen, D.M. Gilles, E.F. Donovan, J.K. Burchill, Swarm observation of field-aligned currents associated with multiple auroral arc systems. J. Geophys. Res. 122, 10145 (2017)

    Google Scholar 

  • J.R. Wygant, A. Keiling, C.A. Cattell, M. Johnson, R.L. Lysak, M. Temerin, F.S. Mozer, C.A. Kletzing, J.D. Scudder, W. Petersen, C.T. Russell, G. Parks, M. Brittnacher, G. Germany, J. Spann, Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet-tail lobe boundary to UVI images: an energy source for the aurora. J. Geophys. Res. 105, 18675 (2000)

    ADS  Google Scholar 

  • A.G. Yahnin, V.A. Sergeev, B.B. Gvozdevsky, S. Vennerstrom, Magnetospheric source region of discrete auroras inferred from their relationship with isotropy boundaries of energetic particles. Ann. Geophys. 15, 943 (1997)

    ADS  Google Scholar 

  • A.G. Yahnin, V.A. Sergeev, B.B. Gvozdevsky, S. Vennerstrom, Reply. Ann. Geophys. 17, 42 (1999)

    ADS  Google Scholar 

  • J. Yang, R.A. Wolf, F.R. Toffoletto, S. Sazykin, RCE-E simulation of substorm growth phase are associate with large-scale adiabatic convection. Geophys. Res. Lett. 40, 6017 (2013)

    ADS  Google Scholar 

  • L.M. Zelenyi, R.A. Kovrazkhin, J.M. Bosqued, Velocity-dispersed ion beams in the nightside auroral zone: AUREOL 3 observations. J. Geophys. Res. 95, 12119 (1990)

    ADS  Google Scholar 

  • L.M. Zelenyi, E.E. Grigorenko, A.O. Fedorov, Spatial-temporal ion structures in the Earth’s magnetotail: beamlets as a result of nonadiabatic impulse acceleration of the plasma. JETP Lett. 80, 663 (2004)

    ADS  Google Scholar 

  • Y. Zhang, H. Matsumoto, H. Kojima, Whistler mode waves in the magnetotail. J. Geophys. Res. 104, 28633 (1999)

    ADS  Google Scholar 

  • S. Zou, L. Lyons, C.-P. Wang, A. Boudouridis, J. Ruohoniemi, P. Anderson, P. Dyson, J. Devlin, On the coupling between the Harang reversal evolution and substorm dynamics: a synthesis of SuperDARN, DMSP, and IMAGE observations. J. Geophys. Res. 114, A01205 (2009)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Johan De Keyser, Mike Henderson, Michael Hesse, Joseph Lemaire, Bill Lotko, Romain Maggiolo, Noora Partamies, Michael Roth, and Michelle Thomsen for helpful conversations. JEB was supported by the NASA Heliophysics LWS TRT program via grants NNX16AB75G and NNX14AN90G, by the NSF GEM Program via award AGS-1502947, by the NASA Heliophysics Guest Investigator Program via grants NNX17AB71G, by the NSF SHINE program via award AGS-1723416. JB acknowledges support by NASA grants 80NSSC18K0834 and 80NSSC18K1452 and NSF grant 1602655. MME acknowledges support from the Romanian Ministry of Research (PCCDI Grant VESS), the Romanian Space Agency (STAR project 182-OANA) and the Belgian Solar Terrestrial Center of Excellence (STCE). SF is supported by JSPS KAKENHI Grant Number JP17K05671. DJK is supported by the National Sciences and Engineering Council of Canada. RLL is supported by NSF grant AGS-1558134. OM acknowledges support by SIFACIT contract 4000118383/16/I–EF with ESA and STAR EXPRESS contract 119/2017 with Romanian Space Agency. THW is supported by JSPS KAKENHI Grant Number JP16H04086 and JP17H01177. The authors also wish to thank the International Space Science Institute ISSI-Bern for organization of this review and for financial support of the team meeting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Borovsky.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Auroral Physics

Edited by David Knudsen, Joe Borovsky, Tomas Karlsson, Ryuho Kataoka and Noora Partmies

Appendix: Some Theories of Auroral Arc Generation that Are in Disuse

Appendix: Some Theories of Auroral Arc Generation that Are in Disuse

Some auroral-arc generator models that were reviewed previously (Borovsky 1993) are no longer actively discussed in the literature. These theories are briefly outlined below.

Arcs Generated at Reconnection \(X\)-Lines

Atkinson (1992) argued that auroral arcs magnetically connect to reconnection \(X\)-lines where they are driven by charge-separation electric fields produced by the differences in electron and ion inertia in the plasma flow through the reconnection diffusion region (i.e. collisionless Hall effects). He further argued (Atkinson et al. 1989) that multiple auroral arcs map to multiple reconnection \(X\)-lines in the magnetotail (see also Safargaleev et al. 1997).

Arcs Generated on a Resonant Absorption Layer

The idea was discussed (Hasegawa 1976; Goertz 1984) wherein kinetic Alfvén waves could be driven by mode conversion on a resonant layer in the magnetotail and that the kinetic Alfvén waves could accelerate electrons into the atmosphere to produce an auroral arc. The energy source most discussed was MHD surface waves (e.g. Kelvin-Helmholtz waves) on the magnetopause driven by the solar wind, with the evanescent surface waves mode converting on density boundaries in the plasma sheet. One drawback with this idea is that the magnetospheric surface waves are traveling antisunward and they will mode convert to produce kinetic Alfvén waves that are propagating antisunward, opposite to the Alfvén waves observed to accelerate electrons sunward (Earthward) to produce aurora. Chen and Kivelson (1991) evaluated the amplitudes of ULF MHD waves in the lobe (between the magnetopause surface wave and the plasma sheet) and found the power transport to be weak (see also the comments of Keiling (2009)). Note that ideas about mode conversion from solar-wind-driven waves to Alfvén waves that drive the aurora are active (cf. Sect. 2.1), with the solar-wind-driven waves being magnetosonic waves instead of Kelvin-Helmholtz waves.

Arcs Generated by Earthward Ion or Plasma Streams Driving Electrostatic Shocks

Ideas were presented (e.g. Kan 1975; Kan and Akasofu 1976) wherein observed Earthward streams of ions (or plasma flows) in the high-latitude portions of the plasma sheet could drive electrostatic shocks (e.g. Swift 1976) near the Earth that stopped the Earthward ion flow and accelerated electrons Earthward to produce auroral arcs. In this picture the power for the auroral arc came from the ram kinetic energy of the Earthward moving ions. The conversion of the ion flow energy into electron beam energy by an electrostatic potential structure has not recently been discussed in the literature, although the conversion of ion-beam energy into Alfvén waves via firehose-type instabilities has been discussed (cf. Sect. 2.1).

Arcs Generated by Earthward Ion Streams Driving Lower-Hybrid Waves

Lower-hybrid waves can transfer energy between ions and electrons. A model for high-latitude auroral arcs was suggested in which Earthward streams of ions in the plasma sheet boundary layer could drive a turbulence of lower-hybrid waves, which in turn stochastically accelerated electrons toward the atmosphere to produce auroral arcs (Bingham et al. 1984, 1988; Roy and Lakhina 1985; Bryant 1990; Bryant et al. 1991). Analogous to the prior model, this idea has not been discussed recently in the literature.

Plasma-Sheet Flow Turbulence Inverse Cascading to Form an Arc

For MHD turbulence restricted to two dimensions there was a plasma-physics research focus on an inverse cascade of turbulent energy to large spatial scales (Fyfe et al. 1977; Pouquet 1978). In magnetospheric physics several calculations and simulations focused on the idea of two-dimensional MHD or electrostatic \(\underline{E}\times\underline{B}\) turbulence in the plasma sheet undergoing an inverse energy cascade to form a coherent structure, mapping to an east-west-aligned auroral arc (Swift 1977, 1979, 1981; Lotko and Schultz 1988; Song and Lysak 1988).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borovsky, J.E., Birn, J., Echim, M.M. et al. Quiescent Discrete Auroral Arcs: A Review of Magnetospheric Generator Mechanisms. Space Sci Rev 216, 1 (2020). https://doi.org/10.1007/s11214-019-0619-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-019-0619-5

Keywords

Navigation