Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solids of quantum Hall skyrmions in graphene

Abstract

Partially filled Landau levels host competing electronic orders. For example, electron solids may prevail close to integer filling of the Landau levels before giving way to fractional quantum Hall liquids at higher carrier density1,2. Here, we report the observation of an electron solid with non-collinear spin texture in monolayer graphene, consistent with solidification of skyrmions3—topological spin textures characterized by quantized electrical charge4,5. We probe the spin texture of the solids using a modified Corbino geometry that allows ferromagnetic magnons to be launched and detected6,7. We find that magnon transport is highly efficient when one Landau level is filled (\(\nu =1\)), consistent with quantum Hall ferromagnetic spin polarization. However, even minimal doping immediately quenches the magnon signal while leaving the vanishing low-temperature charge conductivity unchanged. Our results can be understood by the formation of a solid of charged skyrmions near \(\nu =1\), whose non-collinear spin texture leads to rapid magnon decay. Data near fractional fillings show evidence of several fractional skyrmion solids, suggesting that graphene hosts a highly tunable landscape of coupled spin and charge orders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electron solid phases in the lowest Landau level.
Fig. 2: Skyrmion solid phase near ν = 1.
Fig. 3: Evidence for fractional skyrmion solid phases.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lam, P. K. & Girvin, S. M. Liquid–solid transition and the fractional quantum-Hall effect. Phys. Rev. B 30, 473–475 (1984).

    Article  ADS  Google Scholar 

  2. Levesque, D., Weis, J. J. & MacDonald, A. H. Crystallization of the incompressible quantum-fluid state of a two-dimensional electron gas in a strong magnetic field. Phys. Rev. B 30, 1056–1058 (1984).

    Article  ADS  Google Scholar 

  3. Brey, L., Fertig, H. A., Côté, R. & MacDonald, A. H. Skyrme crystal in a two-dimensional electron gas. Phys. Rev. Lett. 75, 2562–2565 (1995).

    Article  ADS  Google Scholar 

  4. Sondhi, S. L., Karlhede, A., Kivelson, S. A. & Rezayi, E. H. Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B 47, 16419–16426 (1993).

    Article  ADS  Google Scholar 

  5. Fertig, H. A., Brey, L., Côté, R. & MacDonald, A. H. Charged spin-texture excitations and the Hartree–Fock approximation in the quantum Hall effect. Phys. Rev. B 50, 11018–11021 (1994).

    Article  ADS  Google Scholar 

  6. Wei, D. S. et al. Electrical generation and detection of spin waves in a quantum Hall ferromagnet. Science 362, 229–233 (2018).

    Article  ADS  Google Scholar 

  7. Stepanov, P. et al. Long-distance spin transport through a graphene quantum Hall antiferromagnet. Nat. Phys. 14, 907–911 (2018).

    Article  Google Scholar 

  8. Bayot, V., Grivei, E., Melinte, S., Santos, M. B. & Shayegan, M. Giant low temperature heat capacity of GaAs quantum wells near Landau level filling \(\nu =1\). Phys. Rev. Lett. 76, 4584–4587 (1996).

    Article  ADS  Google Scholar 

  9. Bayot, V., Grivei, E., Beuken, J.-M., Melinte, S. & Shayegan, M. Critical behavior of nuclear-spin diffusion in GaAs/AlGaAs heterostructures near Landau level filling \(\nu =1\). Phys. Rev. Lett. 79, 1718–1721 (1997).

    Article  ADS  Google Scholar 

  10. Melinte, S., Grivei, E., Bayot, V. & Shayegan, M. Heat capacity evidence for the suppression of skyrmions at large Zeeman energy. Phys. Rev. Lett. 82, 2764–2767 (1999).

    Article  ADS  Google Scholar 

  11. Zhu, H. et al. Pinning-mode resonance of a skyrme crystal near Landau-level filling factor \(\nu =1\). Phys. Rev. Lett. 104, 226801 (2010).

    Article  ADS  Google Scholar 

  12. Barrett, S. E., Dabbagh, G., Pfeiffer, L. N., West, K. W. & Tycko, R. Optically pumped NMR evidence for finite-size skyrmions in GaAs quantum wells near Landau level filling \(\nu =1\). Phys. Rev. Lett. 74, 5112–5115 (1995).

    Article  ADS  Google Scholar 

  13. Aifer, E. H., Goldberg, B. B. & Broido, D. A. Evidence of skyrmion excitations about \(\nu =1\) in \(\nu =1\)-modulation-doped single quantum wells by interband optical transmission. Phys. Rev. Lett. 76, 680–683 (1996).

    Article  ADS  Google Scholar 

  14. Smet, J. H. et al. Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor. Nature 415, 281–286 (2002).

    Article  ADS  Google Scholar 

  15. Desrat, W. et al. Resistively detected nuclear magnetic resonance in the quantum Hall regime: possible evidence for a skyrme crystal. Phys. Rev. Lett. 88, 256807 (2002).

    Article  ADS  Google Scholar 

  16. Gervais, G. et al. Evidence for skyrmion crystallization from NMR relaxation experiments. Phys. Rev. Lett. 94, 196803 (2005).

    Article  ADS  Google Scholar 

  17. Tracy, L. A., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Resistively detected NMR in a two-dimensional electron system near \(\nu =1\): clues to the origin of the dispersive lineshape. Phys. Rev. B 73, 121306 (2006).

    Article  ADS  Google Scholar 

  18. Mitrović, V. F., Horvatić, M., Berthier, C., Lyon, S. A. & Shayegan, M. NMR study of large skyrmions in \({{\rm{Al}}}_{0.13}{{\rm{Ga}}}_{0.87}{\rm{As}}\) quantum wells. Phys. Rev. B 76, 115335 (2007).

    Article  ADS  Google Scholar 

  19. Piot, B. A. et al. Disorder-induced stabilization of the quantum Hall ferromagnet. Phys. Rev. Lett. 116, 106801 (2016).

    Article  ADS  Google Scholar 

  20. Chen, S. et al. Competing fractional quantum Hall and electron solid phases in graphene. Phys. Rev. Lett. 122, 026802 (2019).

    Article  ADS  Google Scholar 

  21. Jiang, H. W. et al. Quantum liquid versus electron solid around \(\nu =1/5\) Landau-level filling. Phys. Rev. Lett. 65, 633–636 (1990).

    Article  ADS  Google Scholar 

  22. Liu, Y. et al. Observation of reentrant integer quantum Hall states in the lowest Landau level. Phys. Rev. Lett. 109, 036801 (2012).

    Article  ADS  Google Scholar 

  23. Goldman, V. J., Santos, M., Shayegan, M. & Cunningham, J. E. Evidence for two-dimensional quantum Wigner crystal. Phys. Rev. Lett. 65, 2189–2192 (1990).

    Article  ADS  Google Scholar 

  24. Jiang, H. W., Stormer, H. L., Tsui, D. C., Pfeiffer, L. N. & West, K. W. Magnetotransport studies of the insulating phase around \(\nu =1/5\) Landau-level filling. Phys. Rev. B 44, 8107–8114 (1991).

    Article  ADS  Google Scholar 

  25. Côté, R. & MacDonald, A. H. Spin-ordering and magnon collective modes for two-dimensional electron lattices in strong magnetic fields. Phys. Rev. B 53, 10019–10029 (1996).

    Article  ADS  Google Scholar 

  26. Kharitonov, M. Phase diagram for the \(\nu =0\) quantum Hall state in monolayer graphene. Phys. Rev. B 85, 155439 (2012).

    Article  ADS  Google Scholar 

  27. Kallin, C. & Halperin, B. I. Excitations from a filled Landau level in the two-dimensional electron gas. Phys. Rev. B 30, 5655–5668 (1984).

    Article  ADS  Google Scholar 

  28. MacDonald, A. H. & Palacios, J. J. Magnons and skyrmions in fractional Hall ferromagnets. Phys. Rev. B 58, R10171–R10174 (1998).

    Article  ADS  Google Scholar 

  29. Côté, R. et al. Collective excitations, NMR and phase transitions in skyrme crystals. Phys. Rev. Lett. 78, 4825–4828 (1997).

    Article  ADS  Google Scholar 

  30. Sinova, J., MacDonald, A. H. & Girvin, S. M. Disorder and interactions in quantum Hall ferromagnets near \(\nu =1\). Phys. Rev. B 62, 13579–13587 (2000).

    Article  ADS  Google Scholar 

  31. Archer, A. C. & Jain, J. K. Static and dynamic properties of type-II composite fermion Wigner crystals. Phys. Rev. B 84, 115139 (2011).

    Article  ADS  Google Scholar 

  32. Zhu, H. et al. Observation of a pinning mode in a Wigner solid with \(\nu =1/3\) fractional quantum Hall excitations. Phys. Rev. Lett. 105, 126803 (2010).

    Article  ADS  Google Scholar 

  33. Zeng, Y. et al. High-quality magnetotransport in graphene using the edge-free corbino geometry. Phys. Rev. Lett. 122, 137701 (2019).

    Article  ADS  Google Scholar 

  34. Polshyn, H. et al. Quantitative transport measurements of fractional quantum Hall energy gaps in edgeless graphene devices. Phys. Rev. Lett. 121, 226801 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with B. Halperin, C. Huang, A. Macdonald and M. Zalatel. Experimental work at UCSB was supported by the Army Research Office under awards nos. MURI W911NF-16-1-0361 and W911NF-16-1-0482. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT (Japan) and CREST (JPMJCR15F3), JST. A.F.Y. acknowledges the support of the David and Lucile Packard Foundation and and Alfred. P. Sloan Foundation.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. and H.P. fabricated the devices. H.Z., H.P. and A.F.Y. performed the measurements and analysed the data. H.Z. and A.F.Y. wrote the manuscript with input from H.P. T.T. and K.W. grew the hexagonal boron nitride crystals.

Corresponding author

Correspondence to A. F. Young.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and references 1–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Polshyn, H., Taniguchi, T. et al. Solids of quantum Hall skyrmions in graphene. Nat. Phys. 16, 154–158 (2020). https://doi.org/10.1038/s41567-019-0729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0729-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing