Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A high-performance topological bulk laser based on band-inversion-induced reflection

Abstract

Topological insulators are materials that behave as insulators in the bulk and as conductors at the edge or surface due to the particular configuration of their bulk band dispersion. However, up to date possible practical applications of this band topology on materials’ bulk properties have remained abstract. Here, we propose and experimentally demonstrate a topological bulk laser. We pattern semiconductor nanodisk arrays to form a photonic crystal cavity showing topological band inversion between its interior and cladding area. In-plane light waves are reflected at topological edges forming an effective cavity feedback for lasing. This band-inversion-induced reflection mechanism induces single-mode lasing with directional vertical emission. Our topological bulk laser works at room temperature and reaches the practical requirements in terms of cavity size, threshold, linewidth, side-mode suppression ratio and directionality for most practical applications according to Institute of Electrical and Electronics Engineers and other industry standards. We believe this bulk topological effect will have applications in near-field spectroscopy, solid-state lighting, free-space optical sensing and communication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of the construction of the topological bulk laser.
Fig. 2: Topological bulk laser cavity.
Fig. 3: Lasing characteristics of topological bulk laser.
Fig. 4: Directional emission of the topological bulk laser.

Similar content being viewed by others

Data availability

The data that support the plots in this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    Article  CAS  Google Scholar 

  2. Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    Article  CAS  Google Scholar 

  3. Weng, H., Yu, R., Hu, X., Dai, X. & Fang, Z. Quantum anomalous Hall effect and topological electronic states. Adv. Phys. 64, 227–282 (2015).

    Google Scholar 

  4. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    CAS  Google Scholar 

  5. Raghu, S. & Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).

    Google Scholar 

  6. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    CAS  Google Scholar 

  7. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    CAS  Google Scholar 

  8. Fang, K., Yu, Z. & Fan, S. Microscopic theory of photonic one-way edge mode. Phys. Rev. B 84, 075477 (2011).

    Google Scholar 

  9. Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    CAS  Google Scholar 

  10. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines via topological protection. Nat. Phys. 7, 907–912 (2011).

    CAS  Google Scholar 

  11. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photonics 7, 1001–1005 (2013).

    CAS  Google Scholar 

  12. Liang, G. Q. & Chong, Y. D. Optical resonator analog of a two-dimensional topological insulator. Phys. Rev. Lett. 110, 203904 (2013).

    CAS  Google Scholar 

  13. Ma, T., Khanikaev, A. B., Mousavi, S. H. & Shvets, G. Guiding Electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett. 114, 127401 (2015).

    Google Scholar 

  14. Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    Google Scholar 

  15. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    CAS  Google Scholar 

  16. Barik, S., Miyake, H., DeGottardi, W., Waks, E. & Hafezi, M. Two-dimensionally confined topological edge states in photonic crystals. New J. Phys. 18, 113013 (2016).

    Google Scholar 

  17. Siroki, G., Huidobro, P. A. & Giannini, V. Topological photonics: from crystals to particles. Phys. Rev. B 96, 041408 (2017).

    Google Scholar 

  18. Yang, Y. et al. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett. 120, 217401 (2018).

    CAS  Google Scholar 

  19. Shalaev, M. I., Walasik, W., Tsukernik, A., Xu, Y. & Litchinitser, N. M. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14, 31–34 (2019).

    CAS  Google Scholar 

  20. Slobozhanyuk, A. et al. Three-dimensional all-dielectric photonic topological insulator. Nat. Photonics 11, 130–136 (2016).

    Google Scholar 

  21. Yang, Y. et al. Realization of a three-dimensional photonic topological insulator. Nature 565, 622–626 (2019).

    CAS  Google Scholar 

  22. Lu, L. et al. Symmetry-protected topological photonic crystal in three dimensions. Nat. Phys. 12, 337–340 (2017).

    Google Scholar 

  23. Noh, J. et al. Topological protection of photonic mid-gap defect modes. Nat. Photonics 12, 408–415 (2018).

    CAS  Google Scholar 

  24. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6, 782–786 (2012).

    CAS  Google Scholar 

  25. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014).

    CAS  Google Scholar 

  26. Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photonics 11, 763–773 (2017).

    CAS  Google Scholar 

  27. Ozawa, T. et al. Colloquium: topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    CAS  Google Scholar 

  28. St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics 11, 651–656 (2017).

    CAS  Google Scholar 

  29. Parto, M. et al. Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett. 120, 113901 (2018).

    CAS  Google Scholar 

  30. Zhao, H. et al. Topological hybrid silicon microlasers. Nat. Commun. 9, 981 (2018).

    Google Scholar 

  31. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    CAS  Google Scholar 

  32. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Google Scholar 

  33. Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).

    Google Scholar 

  34. IEEE Std 802.3 (IEEE, 2015).

  35. Michalzik, R. (ed.) VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers. Springe. Ser. Optical Sci. 166, 560 (2013).

    Google Scholar 

  36. Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    CAS  Google Scholar 

  37. Ma, R. M. & Oulton, R. F. Applications of nanolasers. Nat. Nanotechnol. 14, 12–22 (2019).

    CAS  Google Scholar 

  38. Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8, 506–511 (2013).

    CAS  Google Scholar 

  39. Van Beijnum, F. et al. Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110, 206802 (2013).

    Google Scholar 

  40. Wang, S. et al. Unusual scaling laws for plasmonic lasers beyond diffraction limit. Nat. Commun. 8, 1889 (2017).

    Google Scholar 

  41. Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 13, 1042–1047 (2018).

    CAS  Google Scholar 

  42. Wu, L. H. & Hu, X. Topological properties of electrons in honeycomb lattice with detuned hopping energy. Sci. Rep. 6, 24347 (2016).

    CAS  Google Scholar 

  43. Gorlach, M. A. et al. Far-field probing of leaky topological states in all dielectric metasurfaces. Nat. Commun. 9, 909 (2018).

    Google Scholar 

  44. Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    CAS  Google Scholar 

  45. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant nos. 11774014, 11574012, 91950115, 61521004), Beijing Natural Science Foundation (grant no. Z180011) and the National Key R&D Program of China (grant no. 2018YFA0704401). X.H. is supported by the CREST Program, Japan Science and Technology Agency (grant no. JPMJCR18T4) and Grants-in-Aid for Scientific Research, Japan Society of Promotion of Science (grant no.17H02913).

Author information

Authors and Affiliations

Authors

Contributions

R.-M.M. conceived and supervised the project. H.-Z.C. and Z.-K.S. designed the device. Z.-K.S. fabricated the devices. S.W, X.-R.M., Z.-Q.Y., Z.-K.S. and R.-M.M. performed optical characterization. H.-Z.C. and S.-L.W. carried out simulations. H.-Z.C., X.-X.W., X.H. and R.-M.M. carried out theoretical analyses. R.-M.M., Z.-K.S., H.-Z.C. and X.H. wrote the manuscript. All authors fully contributed to the project.

Corresponding author

Correspondence to Ren-Min Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Alexander Khanikaev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Parts 1–9, Figs.1–13 and Table 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, ZK., Chen, HZ., Wang, S. et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020). https://doi.org/10.1038/s41565-019-0584-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0584-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing