Skip to main content
Log in

Methane oxidation catalysts based on the perovskite-like complex oxides of cobalt and nickel

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The results of the last 20 year research on the development of rare earth cobaltate- and nickelate-based catalysts of the partial oxidation of methane (POM) are summarized. New way of synthesis of these catalysts based on the decomposition of complex oxide precursors in the reducing environment is discussed. It was found that the high mobility of oxygen in LaSrCoO4 is accompanied by a significant catalytic activity of this complex oxide in methane oxidation. High catalytic performance of NdCaCoO4 in POM might be caused by the reductive decomposition of this complex oxide at a temperature above 900 °C and the formation of closely packed agglomerates of nanoparticles of metallic cobalt, Nd2O3, and CaO. The studies focused on decreasing POM temperature via substitution of cobalt by nickel in complex oxide precursors as well as the works considering decomposition processes in order to obtain metal-oxide nanocomposites with the optimum catalytic performance are discussed. This work shows that the reductive decomposition of Nd2−xCax(Co1−yNiy)O4−d and of the related complex oxides opens up new possibilities for the development of metal-oxide catalysts of the partial oxidation of methane and other catalytic oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. C. Enger, R. Lødeng, A. Holmen, Appl. Catal. A: General, 2008, 346, 1.

    Article  CAS  Google Scholar 

  2. V. A. Makhlin, Ya. R. Tsetseruk, Khim. Prom. Segodnia, 2010, № 3, 6 (in Russian).

    Google Scholar 

  3. O. V. Krylov, Geterogenii kataliz [Heterogeneous Catalysis], Akademkniga, Moscow, 679 pp. (in Russian).

  4. L. Carrette, K. A. Friedrich, U. Stimming, Chem. Phys. Chem., 2000, 1, 162.

    Article  CAS  Google Scholar 

  5. N. Chatrattanawet, S. Skogestad, A. Arpornwichanop, Chem. Eng. Res. Des. 2015, 98, 202.

    Article  CAS  Google Scholar 

  6. P. Arku, B. Regmi, A. Dutta, Chem. Eng. Res. Des., 2017, 136, 385.

    Article  Google Scholar 

  7. A. B. Stambouli, E. Traversa, Renew. Sustain. Energy Rev., 2002, 6, 433.

    Article  CAS  Google Scholar 

  8. S. Singhal, Solid State Ionics, 2000, 135, 305.

    Article  CAS  Google Scholar 

  9. O. Yamamoto, Electrochim. Acta, 2000, 45, 2423.

    Article  CAS  Google Scholar 

  10. X. Zhang, S. H. Chan, G. Li, H. Ho, J. Li, Z. Feng, J. Power Sources, 2010, 195, 685.

    Article  CAS  Google Scholar 

  11. N. Q. Minh, Solid State Ionics, 2004, 174, 271.

    Article  CAS  Google Scholar 

  12. S. Singhal, Solid State Ionics, 2002, 152–153, 405.

    Article  Google Scholar 

  13. V. A. Tsipouriari, Z. Zhang, X. E. Verykios, J. Catal., 1998, 179, 283.

    Article  CAS  Google Scholar 

  14. M. Prette, C. Eichner, M. Perrin, Trans. Faraday Soc., 1946, 43, 335.

    Article  Google Scholar 

  15. X. X. Gao, C. J. Huang, N. W. Zhang, J. H. Li, W. Z. Weng, H. L. Wan, Catal. Today, 2008, 131, 211.

    Article  CAS  Google Scholar 

  16. V. R. Choudhary, A. M. Rajput, B. Prabhakar, A. S. Mamman, Fuel, 1998, 77, 1803.

    Article  CAS  Google Scholar 

  17. H. Arai, T. Yamada, Appl. Catal., 1986, 26, 265.

    Article  CAS  Google Scholar 

  18. G. N. Mazo, I. A. Kudryashov, E. Kemnits, Russ. J. Phys. Chem. (Engl. Transl.), 2001, 75, 1232.

    CAS  Google Scholar 

  19. I. A. Koudriashov, G. N. Mazo, I. K. Murwani, S. Scheurell, E. Kemnitz, J. Therm. Anal. Calorim., 2001, 63, 59.

    Article  CAS  Google Scholar 

  20. G. N. Mazo, S. N. Savvin, V. V. Petrykin, I. A. Koudriashov, Solid State Ionics, 2001, 141, 313.

    Article  Google Scholar 

  21. J. G. McCarty, H. Wise, Catal. Today, 1990, 8, 231.

    Article  CAS  Google Scholar 

  22. J. M. D. Tascon, L. G. Tejuca, React. Kinet. Catal. Lett., 1980, 15, 185.

    Article  CAS  Google Scholar 

  23. G. K. Boreskov, Geterogenii kataliz [Heterogeneous Catalysis], Nauka, Moscow, 1988, 304 pp. (in Russian).

    Google Scholar 

  24. L. V. Borovskikh, G. N. Mazo, E. Kemnitz, Solid State Sci., 2003, 5, 409.

    Article  CAS  Google Scholar 

  25. E. V. Makshina, L. V. Borovskikh, A. L. Kustov, G. N. Mazo, B. V. Romanovskii, Russ. J. Phys. Chem., 2005, 79, 253.

    Google Scholar 

  26. A. Bielan’ski, J. Haber, Oxygen in Catalysis, Marcel Dekker Inc., New York, 1991, 472 p.

    Google Scholar 

  27. Pat. RF 2433950, Bull. Izobret. [Invention Bull.], 2011; https://patentinform.ru/inventions/reg-2433950.html. (in Russian).

  28. A. G. Dedov, D. A. Komissarenko, A. S. Loktev, G. N. Mazo, O. A. Shlyakhtin, M. S. Kaluzhskikh, Yu. A. Mamaev M, I. I. Moiseev, Perspect. Mater., 2011, 150 (in Russian).

  29. A. G. Dedov, A. S. Loktev, G. N. Mazo, D. A. Komissarenko, Yu. A. Mamaev, M. S. Kaluzhskikh, O. A. Shlyakhtin, E. P. Kuznetsova, M. N. Kartashova, I. I. Moiseev, Dokl. Chem. (Engl. Transl.), 2011, 441, 635.

    Google Scholar 

  30. G. N. Mazo, L. M. Kolchina, N. V. Lyskov, L. S. Leonova, A. S. Loktev, A. G. Dedov, I. I. Moiseev, Russ. J. Phys. Chem., 2013, 87, 1976.

    Article  CAS  Google Scholar 

  31. A. G. Dedov, D. A. Komissarenko, A. S. Loktev, G. N. Mazo, O. A. Shlyakhtin, K. V. Parkhomenko, K. A. Proskochenko, Khim. Tekhnol., 2013, №12, 716 (in Russian).

    Google Scholar 

  32. O. A. Shlyakhtin, G. N. Mazo, M. S. Kaluzhskikh, D. A. Komissarenko, A. S. Loktev, A. G. Dedov, Mater. Lett., 2012, 75, 20.

    Article  CAS  Google Scholar 

  33. O. A. Shlyakhtin, G. N. Mazo, S. A. Malyshev, L. N. Kolchina, A. V. Knot’ko, A. S. Loktev, A. G. Dedov, Mater. Res. Bull., 2013, 48, 245.

    Article  CAS  Google Scholar 

  34. S. A. Malyshev, O. A. Shlyakhtin, G. N. Mazo, A. V. Garshev, A. V. Mironov, A. S. Loktev, A. G. Dedov, J. Sol-Gel Sci. Technol., 2017, 81, 372.

    Article  CAS  Google Scholar 

  35. A. G. Dedov, A. S. Loktev, D. A. Komissarenko, G. N. Mazo, O. A. Shlyakhtin, K. V. Parkhomenko, A. A. Kiennemann, A.-C. Roger, A. V. Ishmurzin, I. I. Moiseev, Appl. Catal. A, 2015, 489, 140.

    Article  CAS  Google Scholar 

  36. A. G. Dedov, A. S. Loktev, D. A. Komissarenko, K. V. Parkhomenko, A.-C. Roger, O. A. Shlyakhtin, G. N. Mazo, I. I. Moiseev, Fuel Proc. Technol., 2016, 148, 128.

    Article  CAS  Google Scholar 

  37. S. A. Malyshev, O. A. Shlyakhtin, G. N. Mazo, A. S. Loktev, A. G. Dedov, I. I. Moiseev, Funct. Mater.Lett., 2017, 10, 1750071.

    Article  CAS  Google Scholar 

  38. A. G. Dedov, O. A. Shlyakhtin, A. S. Loktev, G. N. Mazo, S. A. Malyshev, S. I. Tyumenova, A. E. Baranchikov, I. I. Moiseev, Petroleum Chemistry (Engl.Transl.), 2018, 58, 43.

    CAS  Google Scholar 

  39. A. G. Dedov, O. A. Shlyakhtin, A. S. Loktev, G. N. Mazo, S. A. Malyshev, I. I. Moiseev, Dokl.Chem. (Engl. Transl.), 2019, 484, 16.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Mazo.

Additional information

Based on the materials of the Russian National Conference “Interplay between Ionic and Covalent Interactions in Design of Molecular and Nano Chemical Systems” (ChemSci-2019) (May 13–17, 2019, Moscow, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1949–1953, November, 2019.

This work was financially supported by the Ministry of Education and Science of the Russian Federation (governmental assignment “Leading researches on continuing basis”, Project No. 4.6718.2017/6.7) and Presidium of Russian Academy of Sciences (programme No. 33, “Carbon power engineering: chemical aspects”).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazo, G.N., Shlyakhtin, O.A., Loktev, A.S. et al. Methane oxidation catalysts based on the perovskite-like complex oxides of cobalt and nickel. Russ Chem Bull 68, 1949–1953 (2019). https://doi.org/10.1007/s11172-019-2653-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-019-2653-6

Key words

Navigation