Skip to main content
Log in

Injectable hydrogel based on dialdehyde galactomannan and N-succinyl chitosan: a suitable platform for cell culture

  • Special Issue: Hydrogels in Regenerative Medicine
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Regenerative medicine proposes to regenerate or even replace human damaged tissues to return to normal functions. Hence, biomaterials have been used to provide appropriate environment for cell development. Among the groups of biodegradable biomaterials, hydrogels, which are characterized by three-dimensional and cross-linked networks of water-soluble polymers, have been highlighted as suitable matrices for such applications. An injectable hydrogel based on oxidized galactomannan (OxGM) from Delonix regia and N-succinyl chitosan (NSC) was developed and characterized according to its physicochemical and biocompatible properties. The hydrogel was formed by Schiff base (−CH = N−) cross-linking between aldehyde groups from OxGM and NH2 groups from NSC, in few minutes (9.7 min) without any external stimulus. A hydrogel with macroporous structure, interconnected pores, and porosity of 69% was obtained. The biomaterial exhibited excellent injectability. No change in volume or integrity was observed in the hydrogel after its swelling in phosphate buffered saline (PBS) medium. This is an important property because when the hydrogel is injected into the site of interest and it fills the environment, it will not have additional space to occupy. Biocompatibility studies were conducted in vitro, which revealed the non-cytotoxic nature of the material and demonstrated the potential of the hydrogel based on dialdehyde galactomannan and N-succinyl chitosan for cell culture and soft tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen FM, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86–68. https://doi.org/10.1016/j.progpolymsci.2015.02.004

    Article  CAS  Google Scholar 

  2. Patenaude M, Smeets NMB, Hoare T. Designing injectable, covalently cross-linked hydrogels for biomedical applications. Macromol Rapid Commun. 2014;35:598–617. https://doi.org/10.1002/marc.201300818

    Article  CAS  Google Scholar 

  3. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater. 2009;21:3307–29. https://doi.org/10.1002/adma.200802106

    Article  CAS  Google Scholar 

  4. Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev. 2012;41:2193–221. https://doi.org/10.1039/C1CS15203C

    Article  CAS  Google Scholar 

  5. Thambi T, Phan VHG, Lee DS. Stimuli-sensitive injectable hydrogels based on polysaccharides and their biomedical applications. Macromol Rapid Commun. 2016;37:1881–96. https://doi.org/10.1002/marc.201600371

    Article  CAS  Google Scholar 

  6. Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery. Int J Pharm. 2001;224:19–38. https://doi.org/10.1016/S0378-5173(01)00720-7

    Article  CAS  Google Scholar 

  7. Thombare N, Jha U, Mishra S, Siddiqui MZ. Guar gum as a promising starting material for diverse applications: a review. Int J Biol Macromol. 2016;88:361–72. https://doi.org/10.1016/j.ijbiomac.2016.04.001

    Article  CAS  Google Scholar 

  8. Wang X, Gu Z, Qin H, Li L, Yang X, Yu X. Crosslinking effect of dialdehyde starch (DAS) on decellularized porcine aortas for tissue engineering. Int J Biol Macromol. 2015;79:813–21. https://doi.org/10.1016/j.ijbiomac.2015.05.044

    Article  CAS  Google Scholar 

  9. Jia Y, Li J. Molecular assembly of schiff base interactions: construction and application. Chem Rev. 2015;115:1597–621. https://doi.org/10.1021/cr400559g

    Article  CAS  Google Scholar 

  10. Patenaude M, Hoare T. Injectable, mixed natural-synthetic polymer hydrogels with modular properties. Biomacromolecules. 2012;13:369–78. https://doi.org/10.1021/bm2013982

    Article  CAS  Google Scholar 

  11. Wei Z, Yang JH, Liu ZQ, Xu F, Zhou JX, Zrínyi M, Osada Y, Chen YM. Novel biocompatible polysaccharide-based self-healing hydrogel. Adv Funct Mater. 2015;25:1352–9. https://doi.org/10.1002/adfm.201401502

    Article  CAS  Google Scholar 

  12. Raftery RM, Woods B, Marques ALP, Moreira-Silva J, Silva TH, Cryan SA, Reis RL, O’Brien FJ. Multifunctional biomaterials from the sea: assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality. Acta Biomater. 2016;43:160–9. https://doi.org/10.1016/j.actbio.2016.07.009

    Article  CAS  Google Scholar 

  13. Qu J, Zhao X, Ma PX, Guo B. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater. 2017;58:168–80. https://doi.org/10.1016/j.actbio.2017.06.001

    Article  CAS  Google Scholar 

  14. Ren Y, Zhao X, Liang X, Ma PX, Guo B. Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease. Int J Biol Macromol. 2017;105:1079–87. https://doi.org/10.1016/j.ijbiomac.2017.07.130

    Article  CAS  Google Scholar 

  15. Bashir S, Teo YY, Ramesh S, Ramesh K. Physico-chemical characterization of pH-sensitive N-Succinyl chitosan-g-poly (acrylamide-co-acrylic acid) hydrogels and in vitro drug release studies. Polym Degrad Stab. 2017;139:38–54. https://doi.org/10.1016/j.polymdegradstab.2017.03.014

    Article  CAS  Google Scholar 

  16. Kamoun EA. N-succinyl chitosan-dialdehyde starch hybrid hydrogels for biomedical applications. J Adv Res. 2016;7:69–77. https://doi.org/10.1016/j.jare.2015.02.002

    Article  CAS  Google Scholar 

  17. Rogalsky AD, Kwon HJ, Lee-Sullivan P. Compressive stress-strain response of covalently crosslinked oxidized-alginate/N-succinyl-chitosan hydrogels. J Biomed Mater Res. 2011;99 A:367–75. https://doi.org/10.1002/jbm.a.33192

    Article  CAS  Google Scholar 

  18. Tan H, Chu CR, Payne KA, Marra KG. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials. 2009;30:2499–506. https://doi.org/10.1016/j.biomaterials.2008.12.080

    Article  CAS  Google Scholar 

  19. Yan S, Wang T, Feng L, Zhu J, Zhang K, Chen X, Cui L, Yin J. Injectable in situ self-cross-linking hydrogels based on poly(l -glutamic acid) and alginate for cartilage tissue engineering. Biomacromolecules. 2014;15:4495–508. https://doi.org/10.1021/bm501313t

    Article  CAS  Google Scholar 

  20. Zhao H, Heindel ND. Determination of degree of substitution of formul groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharm Res. 1991;8:400–2. https://doi.org/10.1023/A:1015866104055

    Article  CAS  Google Scholar 

  21. Sarker B, Li W, Zheng K, Detsch R, Boccaccini AR. Designing porous bone tissue engineering scaffolds with enhanced mechanical properties from composite hydrogels composed of modified alginate, gelatin, and bioactive glass. ACS Biomater Sci Eng. 2016;2:2240–54. https://doi.org/10.1021/acsbiomaterials.6b00470

    Article  CAS  Google Scholar 

  22. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91. https://doi.org/10.1016/j.biomaterials.2005.02.002

    Article  CAS  Google Scholar 

  23. Liu M, Zheng H, Chen J, Li S, Huang J, Zhou C. Chitosan-chitin nanocrystal composite scaffolds for tissue engineering. Carbohydr Polym. 2016;152:832–40. https://doi.org/10.1016/j.carbpol.2016.07.042

    Article  CAS  Google Scholar 

  24. Ou X, Zheng J, Zhao X, Liu M. Chemically Cross-Linked Chitin Nanocrystal Scaffolds for drug delivery. ACS Appl Nano Mater. 2018;12:6790–9. https://doi.org/10.1021/acsanm.8b01585

    Article  CAS  Google Scholar 

  25. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym. 2013;94:603–11. https://doi.org/10.1016/j.carbpol.2013.01.076

    Article  CAS  Google Scholar 

  26. Bružauskaite I, Bironaite D, Bagdonas E, Bernotiene E. Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology. 2016;68:355–69. https://doi.org/10.1007/s10616-015-9895-4

    Article  CAS  Google Scholar 

  27. Zhang L, Ge H, Xu M, Cao J, Dai Y. Physicochemical properties, antioxidant and antibacterial activities of dialdehyde microcrystalline cellulose. Cellulose. 2017;24:2287–98. https://doi.org/10.1007/s10570-017-1255-4

    Article  CAS  Google Scholar 

  28. Amer H, Nypelö T, Sulaeva I, Bacher M, Henniges U, Potthast A, Rosenau T. Synthesis and characterization of periodate-oxidized polysaccharides: dialdehyde xylan (DAX). Biomacromolecules. 2016;17:2972–80. https://doi.org/10.1021/acs.biomac.6b00777

    Article  CAS  Google Scholar 

  29. Lin ZT, Song K, Bin JP, Liao YL, Jiang GB. Characterization of polymer micelles with hemocompatibility based on N-succinyl-chitosan grafting with long chain hydrophobic groups and loading aspirin. J Mater Chem. 2011;21:19153–65. https://doi.org/10.1039/C1JM13208C

    Article  CAS  Google Scholar 

  30. Fathi A, Mithieux SM, Wei H, Chrzanowski W, Valtchev P, Weiss AS, Dehghani F. Elastin based cell-laden injectable hydrogels with tunable gelation, mechanical and biodegradation properties. Biomaterials. 2014;35:5425–35. https://doi.org/10.1016/j.biomaterials.2014.03.026

    Article  CAS  Google Scholar 

  31. Naseri N, Poirier JM, Girandon L, Fröhlich M, Oksman K, Mathew AP. 3-Dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: Tailoring of porosity and mechanical performance. RSC Adv. 2016;6:5999–6007. https://doi.org/10.1039/C5RA27246G

    Article  CAS  Google Scholar 

  32. Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. 2010;16:371–83. https://doi.org/10.1089/ten.teb.2009.0639

    Article  CAS  Google Scholar 

  33. Saporito F, Baugh LM, Rossi S, Bonferoni MC, Perotti C, Sandri G, Black L, Ferrari F. In situ gelling scaffolds loaded with platelet growth factors to improve cardiomyocyte survival after ischemia. ACS Biomater Sci Eng. 2019;5:329–38. https://doi.org/10.1021/acsbiomaterials.8b01064

    Article  CAS  Google Scholar 

  34. Xu H, Zhang L, Cai J. Injectable, self-healing, β-chitin-based hydrogels with excellent cytocompatibility, antibacterial activity, and potential as drug/cell carriers. ACS Appl Bio Mater. 2019;2:196–204. https://doi.org/10.1021/acsabm.8b00548

    Article  CAS  Google Scholar 

  35. Barnes JM, Przybyla L, Weaver VM. Tissue mechanics regulate brain development, homeostasis and disease. J Cell Sci. 2017;130:71–82. https://doi.org/10.1242/jcs.191742

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the National Council of Scientific and Technological Development (CNPq, Brazil), the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil), INOMAT/INCT (Brazil), and FUNCAP (Brazil) for financial support in the form of grants and fellowships. The authors are grateful to Analytical Center from Federal University of Ceará (UFC) for the SEM analysis and Centro Nordestino de Aplicação e Uso da Ressonância Magnética Nuclear (CENAUREMN) for the NMR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Silveira Vieira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucas de Lima, E., Fittipaldi Vasconcelos, N., da Silva Maciel, J. et al. Injectable hydrogel based on dialdehyde galactomannan and N-succinyl chitosan: a suitable platform for cell culture. J Mater Sci: Mater Med 31, 5 (2020). https://doi.org/10.1007/s10856-019-6343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6343-6

Navigation