Skip to main content

Advertisement

Log in

Chitosan-based double-faced barrier membrane coated with functional nanostructures and loaded with BMP-6

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the present study, a chitosan-based, multifunctional and double-faced barrier membrane was developed for the periodontitis therapy. The porous surface of the membrane was coated with bone-like hydroxyapatite (HA) produced by microwave-assisted biomimetic method and enriched with bone morphogenetic factor 6 (BMP-6) to enhance the bioactivity of chitosan. This surface of the membrane was designed to be in contact with the hard tissue that was damaged due to periodontitis. Otherwise the nonporous surface of membrane, which is in contact with the inflammatory soft tissue, was coated with electrospun polycaprolactone (PCL) fibers to prevent the migration of epithelial cells to the defect area. PrestoBlue, Scanning Electron Microscope (SEM) and real-time PCR results demonstrated that while porous surface of the membrane was enhancing the proliferation and differentiation of MC3T3-E1 preosteoblasts, nonporous surface of membrane did not allow migration of epithelial Madine Darby Bovine Kidney (MDBK) cells. The barrier membrane developed here is biodegradable and can be easily manipulated, has osteogenic activity and inactivity for epithelial cells. Thus, by implanting this membrane to the damaged periodontal tissue, bone regeneration will take place and integrity of periodontal tissues will be preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sowmya S, Bumgardener JD, Chennazhi KP, Nair SV, Jayakumar R. Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Prog Polym Sci. 2013;38:1748–72.

    Article  CAS  Google Scholar 

  2. Soran Z, Tığlı Aydın RS, Gümüşderelioğlu M. Chitosan scaffolds with BMP-6 loaded alginate microspheres for periodontal tissue engineering. J Microencapsul. 2012;29:770–80.

    Article  CAS  Google Scholar 

  3. Bottino MC, Thomas V, Janowski GM. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomater. 2011;7:216–24.

    Article  CAS  Google Scholar 

  4. Mota J, Yu N, Caridade SG, Luz GM, Gomes ME, Reis RL et al. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomater. 2012;8:4173–80.

    Article  CAS  Google Scholar 

  5. Cheng X, Yang F. More than just a barrier-challenges in the development of guided bone regeneration membranes. Matter. 2019;1:550–644.

    Article  Google Scholar 

  6. Rodriguez IA, Selders GS, Fetz AE, Gehrmann CJ, Stein SH, Evensky JA et al. Barrier membranes for dental applications: a review and sweet advancement in membrane developments. MouthTeeth. 2018;2:1–9.

    Google Scholar 

  7. Lee H-S, Byun S-H, Cho J-W, Yang B-E. Past, present and future of regeneration therapy in oral and periodontal tissue: a review. Appl Sci. 2019;9:1046–65.

    Article  CAS  Google Scholar 

  8. Benatti BB, Silvério KG, Casati MZ, Sallum EA, Nociti FH Jr. Physiological features of periodontal regeneration and approaches for periodontal tissue engineering utilizing periodontal ligament cells. J Biosci Bioeng. 2007;103:1–6.

    Article  CAS  Google Scholar 

  9. Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration:materials and biological mechanisms revisited. Eur J Oral Sci. 2018;125:315–37.

    Article  Google Scholar 

  10. Shi R, Xue J, He M, Chen D, Zhang L, Tian W. Structure, physical properties, biocompatibility and in vitro/vivo degradation behavior of anti-infective polycaprolactone-based electrospun membranes for guided tissue/bone regeneration. Polym Degrad Stabil. 2014;109:293–306.

    Article  CAS  Google Scholar 

  11. Liao S, Watari F, Zhu Y, Uo M, Akasaka T, Wang W et al. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro. Dent Mater. 2007;23:1120–8.

    Article  CAS  Google Scholar 

  12. Xue J, He M, Liu H, Niu Y, Crawford A, Coates PD et al. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials. 2014;35:9395–405.

    Article  CAS  Google Scholar 

  13. Lan SF, Kehinde T, Zhang X, Khajotia S, Schmidtke DW, Starly B. Controlled release of metronidazole from composite poly-ɛ-caprolactone/alginate (PCL/alginate) rings for dental implants. Dent Mater. 2013;29:656–65.

    Article  CAS  Google Scholar 

  14. Zamani M, Morshed M, Varshosaz J, Jannesari M. Controlled release of metronidazole benzoate from poly-ɛ-caprolactone electrospun nanofibers for periodontal diseases. Eur J Pharm Biopharm. 2010;75:179–85.

    Article  CAS  Google Scholar 

  15. Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res. 2001;55:304–12.

    Article  CAS  Google Scholar 

  16. Pattnaik S, Nethala S, Tripathi A, Saravanan S, Moorthi A, Selvamurugan N. Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. Int J Biol Macromol. 2011;49:1167–72.

    Article  CAS  Google Scholar 

  17. Tai HY, Fu E, Don TM. Calcium phosphates synthesized by reverse emulsion method for the preparation of chitosan composite membranes. Carbohyd Polym. 2012;88:904–11.

    Article  CAS  Google Scholar 

  18. Xianmiao C, Yubao L, Yi Z, Li Z, Jidong L, Huanan W. Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater Sci Eng C. 2009;29:29–35.

    Article  Google Scholar 

  19. Madhumathi K, Shalumon KT, Rani VVD, Tamura H, Furuike T, Selvamurugan N et al. Wet chemical synthesis of chitosan hydrogel–hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol. 2009;45:12–5.

    Article  CAS  Google Scholar 

  20. Kavya KC, Jayakumar R, Nair S, Chennazhi KP. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol. 2013;59:255–63.

    Article  CAS  Google Scholar 

  21. Akman AC, Tığlı RS, Gümüşderelioğlu M, Nohutcu RM. Bone morphogenetic protein-6-loaded chitosan scaffolds enhance the osteoblastic characteristics of MC3T3-E1 cells. Artif Organs. 2010;34:65–74.

    Article  CAS  Google Scholar 

  22. Caballe-Serano J, Abdeslam-Mohammed Y, Munar-Frau A, Fujioka-Kobayashi M, Hernandez-Alfaro F, Miron R. Adsorption and release kinetics of growth factors on barrier membranes for guided tissue/bone regeneration: a systematic review. Arch Oral Biol. 2019;100:57–68.

    Article  Google Scholar 

  23. Park KH, Kim H, Moon S, Na K. Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering. J Biosci Bioeng. 2009;108:530–7.

    Article  CAS  Google Scholar 

  24. Bayrak GK, Demirtas TT, Gümüşderelioğlu M. Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds. Carbohydr Polym. 2017;157:803–13.

    Article  Google Scholar 

  25. Gümüşderelioğlu M, Agi P. Adsorption of concanavalin A on the well-characterized macroporous chitosan and chitin membranes. React Funct Polym. 2004;61:211–20.

    Article  Google Scholar 

  26. Demirtaş TT, Kaynak G, Gümüşderelioğlu M. Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation. Mater Sci Eng C. 2015;49:713–9.

    Article  Google Scholar 

  27. Zhu JX, Sasano Y, Takahashi I, Mizoguchi I, Kagayama M. Temporal and spatial gene expression of major bone extracellular matrix molecules during embryonic mandibular osteogenesis in rats. Histochem J. 2001;33:25–35.

    Article  CAS  Google Scholar 

  28. Şimşek M, Çapkın M, Karakeçili A, Gümüşderelioğlu M. Chitosan and polycaprolactone membranes patterned via electrospinning: effect of underlying chemistry and pattern characteristics on epithelial/fibroblastic cell behavior. J Biomed Mater Res Part A. 2012;100:3332–43.

    Article  Google Scholar 

  29. Beşkardeş IG, Demirtaş TT, Durukan MD, Gümüşderelioğlu M. Microwave-assisted fabrication of chitosan—hydroxyapatite superporous hydrogel composites as bone scaffolds. J Tissue Eng Regen Med. 2015;11:1233–46.

    Article  Google Scholar 

  30. Tığlı RS, Karakeçili A, Gümüşderelioğlu M. In vitro characterization of chitosan scaffolds: influence of composition and deacetylation degree. J Mater Sci: Mater Med. 2007;18:1665–74.

    Google Scholar 

  31. Aday S, Gümüşderelioğlu M. Bone-like apatite-coated chitosan scaffolds: characterization and osteoblastic activity. Polym Compos. 2010;31:1418–26.

    CAS  Google Scholar 

  32. Kong L, Gao Y, Lu G, Gong Y, Zhao N, Zhang X. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polym J. 2006;42:3171–9.

    Article  CAS  Google Scholar 

  33. Grasser WA, Orlic I, Borovecki F, Riccardi KA, Simic P, Vukicevic S et al. BMP-6 exerts its osteoinductive effect through activation of IGF-I and EGF pathways. Int Orthop. 2007;31:759–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Turkish Scientific and Research Council (TÜBİTAK) Project No: 114M132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menemşe Gümüşderelioğlu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gümüşderelioğlu, M., Sunal, E., Tolga Demirtaş, T. et al. Chitosan-based double-faced barrier membrane coated with functional nanostructures and loaded with BMP-6. J Mater Sci: Mater Med 31, 4 (2020). https://doi.org/10.1007/s10856-019-6331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6331-x

Navigation