Skip to main content
Log in

Study on adsorption coupling photodegradation on hierarchical nanostructured g-C3N4/TiO2/activated carbon fiber composites for toluene removal

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The hierarchical nanostructured g-C3N4/TiO2/activated carbon fiber (ACF) composites are fabricated by simple ultrasonic assisted sol–gel method to removal toluene gas. The results show g-C3N4/TiO2 is evenly loaded onto the ACF surface in the form of a smooth film. The g-C3N4/TiO2/ACF possess strong photocatalytic activity, and its removal efficiency is twice as high as that of TiO2. Compared with TiO2, photoluminescence fluorescence (PL) intensity of g-C3N4/TiO2/ACF decreases nearly 10 times. Interestingly, the significantly enhanced removal efficiency is due to the synergetic effects of adsorption coupling photodegradation and the formation of Ti–O–C bonds between g-C3N4/TiO2 and ACF. The chemical bonding interaction accelerates the separation efficiency of photogenerated charge carriers. The removal efficiency and adsorption amount can be up to 94% and 140.55 mg/g for toluene concentration of 400 mg/m3 and space velocity of 1000 h−1 with 6% g-C3N4/TiO2/ACF. The space-time-yield of g-C3N4/TiO2/ACF reaches 141.06 g h−1 L−1 much higher than that of ACF (73.29 g h−1 L−1) and g-C3N4/TiO2 (64 g h−1 L−1). The possible photodegradation pathway and mechanisms are proposed. Therefore, the g-C3N4/TiO2/ACFs porous composites possess excellent application potential for elimination volatile organic compounds from atmospheric environment.

Schematic diagram of the removal of toluene gas from g-C3N4/TiO2/ACF composites.

Highlights

  • Hierarchical nanostructured g-C3N4/TiO2/ACF are prepared for dynamic toluene removal.

  • g-C3N4/TiO2/ACF has synergetic effect of adsorption coupling photocatalysis.

  • The adsorption amounts of g-C3N4/TiO2/ACF reach 140.55 mg/g.

  • Removal efficiency of g-C3N4/TiO2/ACF is twice as high as that of TiO2.

  • Ti–O–C bonds accelerate separation efficiency of photogenerated charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dai HX, Jing SG, Wang HL et al. (2016) VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China. Sci Total Environ 577:73–83

    Article  CAS  Google Scholar 

  2. Mosleh S, Rahimi MR, Ghaedi M et al. (2018) Sonochemical-assisted synthesis of CuO/Cu2O/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization. Ultrason Sonochem 40:601–610

    Article  CAS  Google Scholar 

  3. Héqueta V, Raillarda C, Debonoab O et al. (2018) Photocatalytic oxidation of VOCs at ppb level using a closed-loop reactor: the mixture effect. Appl Catal B Environ 266:473–486

    Article  CAS  Google Scholar 

  4. Chu FC, Zheng Y, Wen BY et al. (2018) Adsorption of toluene with water on zeolitic imidazolate framework-8/graphene oxide hybrid nanocomposites in a humid atmosphere. RSC Adv 8:2426–2432

    Article  CAS  Google Scholar 

  5. Mosleh S, Rahimi MR, Ghaedi M et al. (2016) Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: central composite optimization and synergistic effect study. Ultrason Sonochem 32:387–397

    Article  CAS  Google Scholar 

  6. Chen X, Chen X, Yu E et al. (2018) In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion. J Chem Eng 344:469–479

    Article  CAS  Google Scholar 

  7. Zhang L, Qin M, Yu W et al. (2017) Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J Electrochem Soc 164:H1086–H1090

    Article  CAS  Google Scholar 

  8. Sabzehmeidani MM, Karimi H, Ghaedi M et al. (2018) Electrospinning preparation of NiO/ZnO composite nanofibers for photodegradation of binary mixture of rhodamine B and methylene blue in aqueous solution: central composite optimization. Appl Organomet Chem e4335

  9. Barzegar MH, Ghaedi M, Avargani VM et al. (2019) Electrochemical synthesis and efficient photocatalytic degradation of azo dye alizarin yellow R by Cu/CuO nanorods under visible LED light irradiation using experimental design methodology. Polyhedron 158:506–514

    Article  CAS  Google Scholar 

  10. Kang DH, Jo H, Jung MJ et al. (2018) Anatase TiO2-doped activated carbon fibers prepared by ultrasonication and their capacitive deionization characteristics. Carbon Lett 27:64–71

    Google Scholar 

  11. Yang X, Qian F, Zou G et al. (2016) Facile fabrication of acidified gC3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation. Appl Catal B 193:22–35

    Article  CAS  Google Scholar 

  12. Jang Y, Kim S, Lee S et al. (2017) Graphene oxide wrapped SiO2/TiO2 hollow nanoparticles loaded with photosensitizer for photothermal and photodynamic combination therapy. Chemistry 23:3719–3727

    Article  CAS  Google Scholar 

  13. Mu N, Tansir A, Basheer M et al. (2017) Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. J Chem Eng 330:1351–1360

    Article  CAS  Google Scholar 

  14. Wang M, Ioccozia J, Sun L et al. (2017) Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. Energy Environ Sci 7:2182–2202

    Article  Google Scholar 

  15. Xu MX, Wang YH, Geng JF et al. (2016) Photodecomposition of NOx on Ag/TiO2, composite catalysts in a gas phase reactor. J Chem Eng 307:181–188

    Article  CAS  Google Scholar 

  16. Barzegar MH, Ghaedi M, Avargani VM et al. (2019) Electrochemical synthesis of Zn:ZnO/Ni2P and efficient photocatalytic degradation of Auramine O in aqueous solution under multi-variable experimental design optimization. Polyhedron 165:1–8

    Article  CAS  Google Scholar 

  17. Ren B, Wang TC, Qu GZ et al. (2018) In situ synthesis of g-C3N4/TiO2 heterojunction nanocomposites as a highly active photocatalyst for the degradation of Orange II under visible light irradiation. Environ Sci Pollut R 2:1–12

    Google Scholar 

  18. Boonprakob N, Wetchakun N, Phanichphant S et al. (2014) Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films. J Colloid Interface Sci 417:402–409

    Article  CAS  Google Scholar 

  19. Liu Y, Wang R, Yang Z et al. (2015) Enhanced visible–light photocatalytic activity of Z–scheme graphitic carbon nitride/oxygen vacancy–rich zinc oxide hybrid photocatalysts. Chin J Catal 36:2135–2144

    Article  CAS  Google Scholar 

  20. Smmets V, Boissière C, Sanchez C et al. (2019) Aerosol route to TiO2-SiO2 catalysts with tailored pore architecture and high epoxidation activity. Chem Mater 31:1610–1619

    Article  CAS  Google Scholar 

  21. Zu G, Shen J, Wang W et al. (2015) Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds. ACS Appl Mater Interfaces 7:5400–5409

    Article  CAS  Google Scholar 

  22. Zhou S, Liu Y, Li J et al. (2014) Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO. Appl Catal B Environ 158:20–29

    Article  CAS  Google Scholar 

  23. Oh WD, Lok LW, Veksha A et al. (2018) Enhanced photocatalytic degradation of bisphenol A with Ag-decorated S-doped g-C3N4 under solar irradiation: performance and mechanistic studies. J Chem Eng 333:739–749

    Article  CAS  Google Scholar 

  24. Majeed I, Manzoor U, Kanodarwala FK et al. (2018) Pd–Ag decorated g-C3N4 as an efficient photocatalyst for hydrogen production from water under direct solar light irradiation. Catal Sci Technol 8:1183–1193

    Article  CAS  Google Scholar 

  25. Zhao SS, Chen S, Yu HT et al. (2012) g-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation. Sep Purif Technol 99:50–54

    Article  CAS  Google Scholar 

  26. Wang L, Yao YY, Zhang ZH et al. (2014) Activated carbon fibers as an excellent partner of Fenton catalyst for dyes decolorization by combination of adsorption and oxidation. J Chem Eng 251:348–354

    Article  CAS  Google Scholar 

  27. Yuan R, Guan RB, Shen WZ et al. (2005) Photocatalytic degradation of methylene blue by a combination of TiO2 and activated carbon fibers. J Colloid Interface Sci 282:87–91

    Article  CAS  Google Scholar 

  28. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397–10401

    Article  CAS  Google Scholar 

  29. Huang ZA, Sun Q, Lv K et al. (2015) Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs. (101) facets of TiO2. Appl Catal B Environ 164:420–427

    Article  CAS  Google Scholar 

  30. Tripathi A, Narayanan S (2018) Impact of TiO2 and TiO2/g-C3N4 nanocomposite to treat industrial wastewater. Environ Nanotechnol Monit Manag 10:280–291

    Google Scholar 

  31. Wei ZS, Sun JL, Xie ZR et al. (2010) Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process. J Hazard Mater 177:814–821

    Article  CAS  Google Scholar 

  32. Litter MI (1999) Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl Catal B Environ 23:89–114

    Article  CAS  Google Scholar 

  33. Lei J, Chen Y, Wang L et al. (2015) Highly condensed g-C3N4-modified TiO2 catalysts with enhanced photodegradation performance toward acid orange 7. J Mater Sci 50:3467–3476

    Article  CAS  Google Scholar 

  34. Senthil RA, Theerthagiri J, Selvi A et al. (2017) Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation. Opt Mater 64:533–539

    Article  CAS  Google Scholar 

  35. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  36. Rivasa B, Hurtadob NG, Fonsecaa RL et al. (2012) Activity, selectivity and stability of praseodymium-doped CeO2 for chlorinated VOCs catalytic combustion. Appl Catal B Environ 121-122:162–170

    Article  CAS  Google Scholar 

  37. Yan H, Yang H (2011) TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J Alloy Compd 509:26–29

    Article  CAS  Google Scholar 

  38. Kishore S, Eunyong J, Tae JP (2013) Novel visible light active graphitic C3N4-TiO2 composite photocatalyst: synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl Catal B Environ 142-143:718–728

    Article  CAS  Google Scholar 

  39. Masayuki K, Koji N (1995) Synthesis, structure, and characteristics of the new host material [(C3N3)2(NH)3]n. Chem Mater 7:257–264

    Article  Google Scholar 

  40. Katsumata K, Motoyoshi R, Matsushita N (2013) Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas. J Hazard Mater 260:475–482

    Article  CAS  Google Scholar 

  41. Baur GB, Beswick O, Spring J et al. (2015) Activated carbon fibers for efficient VOC removal from diluted streams: the role of surface functionalities. Adsorption 21:255–264

    Article  CAS  Google Scholar 

  42. Matsubara K, Inoue M, Hagiwara H et al. (2019) Photocatalytic water splitting over Pt-loaded TiO2 (Pt/TiO2) catalysts prepared by the polygonal barrel-sputtering method. Appl Catal B Environ 254:7–14

    Article  CAS  Google Scholar 

  43. Valery NK, John LZ, John LM (2000) Powder synthesis and characterization of amorphous carbon nitride. Chem Mater 12:3264–3270

    Article  CAS  Google Scholar 

  44. Wang J, Zhang W (2012) Modification of TiO2 nanorod arrays by graphite-like C3N4 with high visible light photoelectrochemical activity. Electrochim Acta 71:10–16

    Article  CAS  Google Scholar 

  45. Miranda C, Mansilla H, Yanez J et al. (2013) Improved photocatalytic activity of g-C3N4/TiO2 composites prepared by a simple impregnation method. J Photochem Photobiol A 253:16–21

    Article  CAS  Google Scholar 

  46. Jiang B, Zhang S, Guo X (2009) Preparation and photocatalytic activity of CeO2/TiO2 interface composite film. Appl Surf Sci 255:5975–5978

    Article  CAS  Google Scholar 

  47. Chakraborty J, Nath I, Verpoort F (2019) Pd-nanoparticle decorated azobenzene based colloidal porous organic polymer for visible and natural sunlight induced Mott–Schottky junction mediated instantaneous Suzuki coupling. J Chem Eng 358:580–588

    Article  CAS  Google Scholar 

  48. Ge L, Han C, Liu J et al. (2011) Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl Catal A Gener 409-410:215–222

    Article  CAS  Google Scholar 

  49. Zhou W, Li T, Wang JQ et al. (2014) Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Res 7:731–742

    Article  CAS  Google Scholar 

  50. Chun HH, Jo WK (2016) Adsorption and photocatalysis of 2-ethyl-1-hexanol over grapheme oxide–TiO2 hybrids post-treated under various thermal conditions. Appl Catal B Environ 180:740–750

    Article  CAS  Google Scholar 

  51. Shen ND, Ni Y, Ma HM (2012) Efficient synthesis of a Chiral Precursor for Angiotensin-Converting Enzyme (ACE) inhibitors in high space-time yield by a new reductase without external cofactors. Org Lett 14:1982–1985

    Article  CAS  Google Scholar 

  52. Balbayeva G, Yerkinova A, Inglezakis VJ et al. (2018) Photochemical degradation of organic pollutants in wastewaters. IOP Conf Ser Mater Sci Eng 301:012099

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Open Project Program of State Key Laboratory of Petroleum Pollution Control (No. PPCIP2017005). Authors are also grateful to FL for checking English phrasing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, F., Li, M. et al. Study on adsorption coupling photodegradation on hierarchical nanostructured g-C3N4/TiO2/activated carbon fiber composites for toluene removal. J Sol-Gel Sci Technol 93, 402–418 (2020). https://doi.org/10.1007/s10971-019-05198-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05198-7

Keywords

Navigation