Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Using single-cell technologies to map the human immune system — implications for nephrology

Abstract

Advances in single-cell technologies are transforming our understanding of cellular identity. For instance, the application of single-cell RNA sequencing and mass cytometry technologies to the study of immune cell populations in blood, secondary lymphoid organs and the renal tract is helping researchers to map the complex immune landscape within the kidney, define cell ontogeny and understand the relationship of kidney-resident immune cells with their circulating counterparts. These studies also provide insights into the interactions of immune cell populations with neighbouring epithelial and endothelial cells in health, and across a range of kidney diseases and cancer. These data have translational potential and will aid the identification of drug targets and enable better prediction of off-target effects. The application of single-cell technologies to clinical renal biopsy samples, or even cells within urine, will improve diagnostic accuracy and assist with personalized prognostication for patients with various kidney diseases. A comparison of immune cell types in peripheral blood and secondary lymphoid organs in healthy individuals and in patients with systemic autoimmune diseases that affect the kidney will also help to unravel the mechanisms that underpin the breakdown in self-tolerance and propagation of autoimmune responses. Together, these immune cell atlases have the potential to transform nephrology.

Key points

  • Single-cell technologies have enabled the mapping of immune cell populations in the kidney, the circulation, and secondary lymphoid tissues in unprecedented detail.

  • A variety of single-cell technologies have become mainstream over the last 5 years, including high-throughput single-cell RNA sequencing (scRNA-seq), single-cell chromatin accessibility assays and mass cytometry.

  • scRNA-seq has enabled researchers to interrogate the transcriptional diversity present in specific cell populations, for example, in circulating dendritic cells and monocytes, and create large-scale atlases profiling the landscape of tissues.

  • Using trajectory analysis, single-cell methods can reveal snapshots of dynamic processes such as cellular differentiation and responses to different immune stimuli.

  • Analysis of scRNA-seq data enables an assessment of how antigen-specific B and T lymphocyte clones expand in vivo in different tissue and disease states.

  • scRNA-seq data also enable ligand–receptor interactions to be explored in an unbiased manner, allowing novel cell signalling networks to be identified.

  • Single-cell studies have also uncovered disease-associated cell states and gene expression profiles, deepening our understanding of disease mechanisms and potentially identifying therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Localization of immune cells in the circulatory system, secondary lymphoid organs and non-lymphoid organs.
Fig. 2: scRNA-seq technologies.
Fig. 3: Mapping immune cells in peripheral blood.
Fig. 4: Mapping immune cells in lymphoid organs.
Fig. 5: Mapping immune cells in the kidney.

Similar content being viewed by others

References

  1. Stubbington, M. J. T., Rozenblatt-Rosen, O., Regev, A. & Teichmann, S. A. Single-cell transcriptomics to explore the immune system in health and disease. Science 358, 58–63 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18, 35–45 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Masopust, D. & Soerens, A. G. Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol. 37, 521–546 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anders, H. J. & Schaefer, L. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J. Am. Soc. Nephrol. 25, 1387–1400 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang, P. M., Nikolic-Paterson, D. J. & Lan, H. Y. Macrophages: versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol. 15, 144–158 (2019).

    Article  PubMed  Google Scholar 

  6. Gordon, S. Pattern recognition receptors: doubling up for the innate immune response. Cell 111, 927–930 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Baccala, R. et al. Sensors of the innate immune system: their mode of action. Nat. Rev. Rheumatol. 5, 448–456 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Woo, S. R., Corrales, L. & Gajewski, T. F. Innate immune recognition of cancer. Annu. Rev. Immunol. 33, 445–474 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Mahe, E., Pugh, T. & Kamel-Reid, S. T cell clonality assessment: past, present and future. J. Clin. Pathol. 71, 195–200 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Di Noia, J. M. & Neuberger, M. S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22 (2007).

    Article  PubMed  CAS  Google Scholar 

  11. Qi, H., Kastenmuller, W. & Germain, R. N. Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue. Annu. Rev. Cell. Dev. Biol. 30, 141–167 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Verma, M., Kulshrestha, S. & Puri, A. Genome sequencing. Methods Mol. Biol. 1525, 3–33 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519–522 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Dey, S. S., Kester, L., Spanjaard, B., Bienko, M. & van Oudenaarden, A. Integrated genome and transcriptome sequencing of the same cell. Nat. Biotechnol. 33, 285–289 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng, J. B. et al. Transcriptional programming of normal and inflamed human epidermis at single-cell resolution. Cell Rep. 25, 871–883 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Potter, S. S. Single-cell RNA sequencing for the study of development, physiology and disease. Nat. Rev. Nephrol. 14, 479–492 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Adam, M., Potter, A. S. & Potter, S. S. Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development. Development 144, 3625–3632 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berry, M. R. et al. Renal sodium gradient orchestrates a dynamic antibacterial defense zone. Cell 170, 860–874.e19 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 15, 932–935 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Polanski, K. et al. BBKNN: Fast batch alignment of single cell transcriptomes. Bioinformatics https://doi.org/10.1093/bioinformatics/btz625 (2019).

  39. Korsunsky, P. et al. Fast, sensitive, and accurate integration of single cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stubbington, M. J. et al. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13, 329–332 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Olah, M. et al. A transcriptomic atlas of aged human microglia. Nat. Commun. 9, 539 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 9, 791 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Farhadian, S. F. et al. Single-cell RNA sequencing reveals microglia-like cells in cerebrospinal fluid during virologically suppressed HIV. JCI Insight 3, e121718 (2018).

    Article  PubMed Central  Google Scholar 

  45. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Breton, G. et al. Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs. J. Exp. Med. 213, 2861–2870 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. See, P. et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356, eaag3009 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Wimmers, F. et al. Single-cell analysis reveals that stochasticity and paracrine signaling control interferon-alpha production by plasmacytoid dendritic cells. Nat. Commun. 9, 3317 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McKinney, E. F., Lee, J. C., Jayne, D. R., Lyons, P. A. & Smith, K. G. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 523, 612–616 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lindeman, I. et al. BraCeR: B-cell-receptor reconstruction and clonality inference from single-cell RNA-seq. Nat. Methods 15, 563–565 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Canzar, S., Neu, K. E., Tang, Q., Wilson, P. C. & Khan, A. A. BASIC: BCR assembly from single cells. Bioinformatics 33, 425–427 (2017).

    CAS  PubMed  Google Scholar 

  54. Lonnberg, T. et al. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria. Sci. Immunol. 2, eaal2192 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li, N. et al. Memory CD4(+) T cells are generated in the human fetal intestine. Nat. Immunol. 20, 301–312 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bjorklund, A. K. et al. The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing. Nat. Immunol. 17, 451–460 (2016).

    Article  PubMed  CAS  Google Scholar 

  57. Crinier, A. et al. High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. Immunity 49, 971–986.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cyster, J. G. et al. Follicular stromal cells and lymphocyte homing to follicles. Immunol. Rev. 176, 181–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Mueller, S. N. & Germain, R. N. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat. Rev. Immunol. 9, 618–629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rodda, L. B. et al. Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity 48, 1014–1028.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rogers, N. M., Ferenbach, D. A., Isenberg, J. S., Thomson, A. W. & Hughes, J. Dendritic cells and macrophages in the kidney: a spectrum of good and evil. Nat. Rev. Nephrol. 10, 625–643 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Olszak, T. et al. Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 509, 497–502 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sano, T. et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 163, 381–393 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vieira Braga, F. A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25, 1153–1163 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. MacParland, S. A. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Noelia A-Gonzalez, J. A. et al. Phagocytosis imprints heterogeneity in tissue-resident macrophages. J. Exp. Med. 214, 1281–1296 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. GTEx Consortium Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  CAS  Google Scholar 

  72. Hulsmans, M. et al. Macrophages facilitate electrical conduction in the heart. Cell 169, 510–522.e20 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. De Schepper, S. et al. Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell 175, 400–415.e13 (2018).

    Article  PubMed  CAS  Google Scholar 

  75. Cohen, M. et al. Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell 175, 1031–1044.e18 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Naik, S. et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520, 104–108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Martin, J. C. et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Olah, M. et al. A single cell-based atlas of human microglial states reveals associations with neurological disorders and histopathological features of the aging brain. Alzheimers Dement. 14, 1544–1545 (2018).

    Article  Google Scholar 

  84. Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356.e16 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789.e18 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Koepsell, H., Nicholson, W. A., Kriz, W. & Hohling, H. J. Measurements of exponential gradients of sodium and chlorine in the rat kidney medulla using the electron microprobe. Pflugers Arch. 350, 167–184 (1974).

    Article  CAS  PubMed  Google Scholar 

  88. Knepper, M. A., Kwon, T. H. & Nielsen, S. Molecular physiology of water balance. N. Engl. J. Med. 373, 196 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Levitin, H., Goodman, A., Pigeon, G. & Epstein, F. H. Composition of the renal medulla during water diuresis. J. Clin. Invest. 41, 1145–1151 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen, L. et al. Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq. Proc. Natl Acad. Sci. USA 114, E9989–E9998 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cusanovich, D. A. et al. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell 174, 1309–1324.e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sivakamasundari, V. et al. Comprehensive cell type specific transcriptomics of the human kidney. Preprint at bioRxiv https://doi.org/10.1101/238063 (2017)

  94. Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749.e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Menon, R. et al. Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney. Development 145, dev164038 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Lindstrom, N. O. et al. Conserved and divergent features of human and mouse kidney organogenesis. J. Am. Soc. Nephrol. 29, 785–805 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Combes, A. N., Zappia, L., Er, P. X., Oshlack, A. & Little, M. H. Single-cell analysis reveals congruence between kidney organoids and human fetal kidney. Genome Med 11, 3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mass, E. et al. Specification of tissue-resident macrophages during organogenesis. Science 353, aaf4238 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bellan, C. et al. Analysis of the IgVH genes in T cell-mediated and antibody-mediated rejection of the kidney graft. J. Clin. Pathol. 64, 47–53 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Malone, A. F., Wu, H. & Humphreys, B. D. Bringing renal biopsy interpretation into the molecular age with single-cell RNA sequencing. Semin. Nephrol. 38, 31–39 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Der, E. et al. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight 2, 93009 (2017).

    Article  Google Scholar 

  103. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wu, H. et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J. Am. Soc. Nephrol. 29, 2069–2080 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thaunat, O. et al. Chronic rejection triggers the development of an aggressive intragraft immune response through recapitulation of lymphoid organogenesis. J. Immunol. 185, 717–728 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Thaunat, O. et al. B cell survival in intragraft tertiary lymphoid organs after rituximab therapy. Transplantation 85, 1648–1653 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Webster, W. S. et al. Mononuclear cell infiltration in clear-cell renal cell carcinoma independently predicts patient survival. Cancer 107, 46–53 (2006).

    Article  PubMed  Google Scholar 

  109. Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.J.S. is supported by a Wellcome Trust Clinical Training Fellowship (216366/Z/19/Z), and a Cancer Research UK predoctoral bursary (A25230). J.R.F. is supported by the NIHR Cambridge Blood and Transplant Research Unit in Organ Donation. M.R.C. is supported by the National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre, by a Chan-Zuckerberg Initiative Human Cell Atlas Technology Development Grant, a Medical Research Council New Investigator Research Grant (MR/N024907/1), an Arthritis Research UK Cure Challenge Research Grant (21777), and an NIHR Research Professorship (RP-2017–08-ST2–002).

Author information

Authors and Affiliations

Authors

Contributions

The authors researched data for the article, contributed to discussion of the article’s content, writing and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Menna R. Clatworthy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CellPhoneDB: https://www.cellphonedb.org/

Human Kidney Cell Atlas: https://www.kidneycellatlas.org

Glossary

scATAC-seq

Cell assay for transposase accessible chromatin with high-throughput sequencing is a sequencing-based assay that detects open regions of chromatin.

Mass cytometry

Use of a modified mass spectrometer to measure the binding of heavy metal tagged antibodies attached to target cells to infer protein expression levels at single-cell resolution.

High-dimensional data

Data characterized by a high number of simultaneous measurements (dimensions) measured for each sample. In the case of single-cell RNA sequencing, a large number of genes is measured for each cell.

Droplet microfluidics

Formation of individual droplets through combination or reagents within an oil suspension to form individual barcoded reaction vessels.

Cellular barcoding

Labelling the cDNA or RNA originating from a single cell with a DNA barcode, which, once sequenced, enables the tracing back of each individual sequenced transcript to the cell of origin.

Cell atlas

A large-scale census of cell types and states found in a tissue or a collection of tissues. Typically, such datasets contain tens or hundreds of thousands of cells and are powered to detect minority populations (<1% of the total).

Cell clustering

An approach to the partition of sets of cells into communities with similar gene or protein expression profiles.

Subcapsular sinus macrophages

A layer of macrophages positioned in the subcapsular sinus of the lymph node, where they are poised to sample antigens in lymph.

Splenic red pulp macrophages

Macrophages within the red pulp regions of the spleen with specialized roles in the phagocytosis of senescent and damaged erythrocytes, and iron recycling.

Marginal zone macrophages

Macrophages positioned within the marginal zone of the spleen, where they are poised to sample antigens in the blood.

Innate lymphoid cells

(ILCs). Lymphocytes that lack somatically rearranged antigen-specific receptors.

Peristalsis

Rhythmic contraction and relaxation of the smooth muscle lining a viscus, resulting in wave-like propulsion of its contents.

Massively parallel scRNA-seq

A method of single-cell RNA sequencing (scRNA-seq) in which cells are first sorted into individual wells, before undergoing lysis and reverse transcription.

T cell receptor reconstruction

A method for identifying the specific rearranged sequences of T cell receptors in single-cell RNA sequencing data.

Drop-seq

Early microfluidics-based droplet sequencing method where the microfluidics were assembled by the end user.

inDrop

A droplet microfluidics single-cell RNA sequencing approach in which cells are encapsulated into droplets and combined with oligonucleotide labelled hydrogel microspheres.

Fc receptor pathway

Intracellular signalling cascade downstream of ligation of Fc receptors by the Fc portion of immunoglobulin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, B.J., Ferdinand, J.R. & Clatworthy, M.R. Using single-cell technologies to map the human immune system — implications for nephrology. Nat Rev Nephrol 16, 112–128 (2020). https://doi.org/10.1038/s41581-019-0227-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0227-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing