Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neonatal nonviral gene editing with the CRISPR/Cas9 system improves some cardiovascular, respiratory, and bone disease features of the mucopolysaccharidosis I phenotype in mice

Abstract

Mucopolysaccharidosis type I (MPS I) is caused by deficiency of alpha-L-iduronidase (IDUA), leading to multisystemic accumulation of glycosaminoglycans (GAG). Untreated MPS I patients may die in the first decades of life, mostly due to cardiovascular and respiratory complications. We previously reported that the treatment of newborn MPS I mice with intravenous administration of lipossomal CRISPR/Cas9 complexes carrying the murine Idua gene aiming at the ROSA26 locus resulted in long-lasting IDUA activity and GAG reduction in various tissues. Following this, the present study reports the effects of gene editing in cardiovascular, respiratory, bone, and neurologic functions in MPS I mice. Bone morphology, specifically the width of zygomatic and femoral bones, showed partial improvement. Although heart valves were still thickened, cardiac mass and aortic elastin breaks were reduced, with normalization of aortic diameter. Pulmonary resistance was normalized, suggesting improvement in respiratory function. In contrast, behavioral abnormalities and neuroinflammation still persisted, suggesting deterioration of the neurological functions. The set of results shows that gene editing performed in newborn animals improved some manifestations of the MPS I disorder in bone, respiratory, and cardiovascular systems. However, further studies will be imperative to find better delivery strategies to reach “hard-to-treat” tissues to ensure better systemic and neurological effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GAG quantification using Tandem Mass Spectrometry.
Fig. 2: Facial morphology and body weight.
Fig. 3: Effect of gene editing on bone abnormalities.
Fig. 4: Left ventricular mass assessed by echocardiography.
Fig. 5: Heart valve thickening and GAG storage.
Fig. 6: Pathology in the aorta.
Fig. 7: Respiratory disease.
Fig. 8: Behavior analysis: open field and inhibitory avoidance test.
Fig. 9: Neuroinflammation.

Similar content being viewed by others

References

  1. Giugliani R, Federhen A, Rojas MVM, Vieira T, Artigalás O, Pinto LL, et al. Mucopolysaccharidosis I, II, and VI: Brief review and guidelines for treatment. Genet Mol Biol. 2010;33:589–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hollak CEM, Wijburg FA. Treatment of lysosomal storage disorders: successes and challenges. J Inherit Metab Dis. 2014;37:587–98.

    CAS  PubMed  Google Scholar 

  3. Patel P, Suzuki Y, Tanaka A, Yabe H, Kato S, Shimada T, et al. Impact of enzyme replacement therapy and hematopoietic stem cell therapy on growth in patients with Hunter syndrome. Mol Genet Metab Rep. 2014;1:184–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Muenzer J, Wraith JE, Clarke LA. Mucopolysaccharidosis I: management and treatment guidelines. Pediatrics. 2009;123. https://doi.org/10.1542/peds.2008-0416.

    PubMed  Google Scholar 

  5. Giugliani R. Mucopolysacccharidoses: from understanding to treatment, a century of discoveries. Genet Mol Biol. 2012;35:924–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirth A, Berg A, Greve G. Successful treatment of severe heart failure in an infant with Hurler syndrome. J Inherit Metab Dis. 2007;30:820.

    CAS  PubMed  Google Scholar 

  7. Soliman OII, Timmermans RGM, Nemes A, Vletter WB, Wilson JHP, ten Cate FJ, et al. Cardiac abnormalities in adults with the attenuated form of mucopolysaccharidosis type I. J Inherit Metab Dis. 2007;30:750–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan MO, Sen ES, Hardy E, Hensman P, Wraith E, Jones S, et al. Assessment of musculoskeletal abnormalities in children with mucopolysaccharidoses using pGALS. Pediatr Rheumatol Online J. 2014;12:32.

    PubMed  PubMed Central  Google Scholar 

  9. Chan D, Li A, Yam M, Li C, Fok T. Hurler’s syndrome with cor pulmonale secondary to obstructive sleep apnoea treated by continuous positive airway pressure. J Paediatr Child Health. 2003;39:558–9.

    CAS  PubMed  Google Scholar 

  10. Taylor C, Brady P, O’Meara A, Moore D, Dowling F, Fogarty E. Mobility in Hurler syndrome. J Pediatr Orthop. 2008;28:163–8.

    PubMed  Google Scholar 

  11. Braunlin EA, Harmatz PR, Scarpa M, Furlanetto B, Kampmann C, Loehr JP, et al. Cardiac disease in patients with mucopolysaccharidosis: presentation, diagnosis and management. J Inherit Metab Dis. 2011;34:1183–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin S-P, Shih S-C, Chuang C-K, Lee K-S, Chen M-R, Niu D-M, et al. Characterization of pulmonary function impairments in patients with mucopolysaccharidoses-changes with age and treatment. Pediatr Pulmonol. 2014;49:277–84.

    PubMed  Google Scholar 

  13. Baldo G, Tavares AMV, Gonzalez E, Poletto E, Mayer FQ, Matte U, da S, et al. Progressive heart disease in mucopolysaccharidosis type I mice may be mediated by increased cathepsin B activity. Cardiovasc Pathol. 2017;27:45–50.

    CAS  PubMed  Google Scholar 

  14. Poswar F de O, de Souza CFM, Giugliani R, Baldo G. Aortic root dilatation in patients with mucopolysaccharidoses and the impact of enzyme replacement therapy. Heart Vessels. 2018;34:290–5.

    PubMed  Google Scholar 

  15. Ohmi K, Greenberg DS, Rajavel KS, Ryazantsev S, Li HH, Neufeld EF. Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc Natl Acad Sci USA. 2003;100:1902–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. de Oliveira PG, Baldo G, Mayer FQ, Martinelli B, Meurer L, Giugliani R, et al. Characterization of joint disease in mucopolysaccharidosis type I mice. Int J Exp Pathol. 2013;94:305–11.

    PubMed  PubMed Central  Google Scholar 

  17. Braunlin E, Mackey-Bojack S, Panoskaltsis-Mortari A, Berry J, Mcelmurry R, Riddle M, et al. Cardiac functional and histopathologic findings in humans and mice with mucopolysaccharidosis type I: implications for assessment of therapeutic interventions in Hurler syndrome. Pediatr Res. 2006;59:27–32.

    PubMed  Google Scholar 

  18. Garcia AR, Pan J, Lamsa JC, Muenzer J. The characterization of a murine model of mucopolysaccharidosis II (Hunter syndrome). J Inherit Metab Dis. 2007;30:924–34.

    CAS  PubMed  Google Scholar 

  19. Baldo G, Mayer FQ, Martinelli B, Dilda A, Meyer F, Ponder KP, et al. Evidence of a progressive motor dysfunction in mucopolysaccharidosis type I mice. Behav Brain Res. 2012;233:169–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schneider AP, Matte U, Pasqualim G, Tavares AMV, Mayer FQ, Martinelli B, et al. Deleterious effects of interruption followed by reintroduction of enzyme replacement therapy on a lysosomal storage disorder. Transl Res. 2016;176:29–37.e1.

    CAS  PubMed  Google Scholar 

  21. Schuh R, Baldo G, Teixeira H. Nanotechnology applied to treatment of mucopolysaccharidoses. Expert Opin Drug Deliv. 2016;13:1709–18.

    CAS  PubMed  Google Scholar 

  22. Schuh RS, Poletto E, Pasqualim G, Tavares AMV, Meyer FS, Gonzalez EA, et al. In vivo genome editing of mucopolysaccharidosis I mice using the CRISPR/Cas9 system. J Control Release. 2018;288:23–33.

    CAS  PubMed  Google Scholar 

  23. Baldo G, Quoos Mayer F, Burin M, Carrillo-Farga J, Matte U, Giugliani R. Recombinant encapsulated cells overexpressing alpha-L-iduronidase correct enzyme deficiency in human mucopolysaccharidosis type I cells. Cells Tissues Organs. 2012;195:323–9.

    CAS  PubMed  Google Scholar 

  24. Kubaski F, Mason RW, Nakatomi A, Shintaku H, Xie L, van Vlies NN, et al. Newborn screening for mucopolysaccharidoses: a pilot study of measurement of glycosaminoglycans by tandem mass spectrometry. J Inherit Metab Dis. 2017;40:151–8.

    CAS  PubMed  Google Scholar 

  25. Baldo G, Mayer FQ, Martinelli BZ, de Carvalho TG, Meyer FS, de Oliveira PG, et al. Enzyme replacement therapy started at birth improves outcome in difficult-to-treat organs in mucopolysaccharidosis I mice. Mol Genet Metab. 2016;109:33–40.

    Google Scholar 

  26. Criée CP, Sorichter S, Smith HJ, Kardos P, Merget R, Heise D, et al. Body plethysmography—Its principles and clinical use. Respir Med. 2011;105:959–71.

    PubMed  Google Scholar 

  27. Sands MS, Barker JE, Vogler C, Levy B, Gwynn B, Galvin N, et al. Treatment of murine mucopolysaccharidosis type VII by syngeneic bone marrow transplantation in neonates. Lab Investig. 1993;68:676–86.

    CAS  PubMed  Google Scholar 

  28. Baldo G, Lorenzini DM, Santos DS, Mayer FQ, Vitry S, Bigou S, et al. Shotgun proteomics reveals possible mechanisms for cognitive impairment in Mucopolysaccharidosis I mice. Mol Genet Metab. 2015;114:138–45.

    CAS  PubMed  Google Scholar 

  29. Hartung SD, Reddy RG, Whitley CB, McIvor RS. Enzymatic correction and cross-correction of mucopolysaccharidosis type I fibroblasts by adeno-associated virus-mediated transduction of the alpha-L-iduronidase gene. Hum Gene Ther. 1999;10:2163–72.

    CAS  PubMed  Google Scholar 

  30. Kakkis ED, Muenzer J, Tiller GE, Waber L, Belmont J, Passage M, et al. Enzyme-replacement therapy in mucopolysaccharidosis I. N Engl J Med. 2001;344:182–8.

    CAS  PubMed  Google Scholar 

  31. Neufeld ES, Muenzer J. The online metabolic and molecular basis of inherited disease. In: Valle D, Beaudet AL, Vogelstein B, editors. New York: MacGrow Hill; 2007.

  32. Tomatsu S, Fujii T, Fukushi M, Oguma T, Shimada T, Maeda M, et al. Newborn screening and diagnosis of mucopolysaccharidoses. Mol Genet Metab. 2013;110:42–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Parini R, Deodato F, Di Rocco M, Lanino E, Locatelli F, Messina C, et al. Open issues in Mucopolysaccharidosis type I-Hurler. Orphanet J Rare Dis. 2017;12:112.

    PubMed  PubMed Central  Google Scholar 

  34. Tomatsu S, Alméciga-Díaz CJ, Montaño AM, Yabe H, Tanaka A, Dung VC, et al. Therapies for the bone in mucopolysaccharidoses. Mol Genet Metab. 2015;114:94–109.

    CAS  PubMed  Google Scholar 

  35. Pievani A, Azario I, Antolini L, Shimada T, Patel P, Remoli C. Neonatal bone marrow transplantation prevents bone pathology in a mouse model of mucopolysaccharidosis type I. Blood. 2015;125:1662–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Azario I, Pievani A, Del Priore F, Antolini L, Santi L, Corsi A, et al. Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I. Sci Rep. 2017;7:9473.

    PubMed  PubMed Central  Google Scholar 

  37. Rowan DJ, Tomatsu S, Grubb JH, Haupt B, Montaño AM, Oikawa H, et al. Long circulating enzyme replacement therapy rescues bone pathology in mucopolysaccharidosis VII murine model. Mol Genet Metab. 2012;107:161–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hinton RB, Yutzey KE. Heart valve structure and function in development and disease. Annu Rev Physiol. 2011;73:29–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bigg PW, Baldo G, Sleeper MM, O’Donnell PA, Bai H, Rokkam VRP, et al. Pathogenesis of mitral valve disease in mucopolysaccharidosis VII dogs. Mol Genet Metab. 2013;110:319–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Poletto E, Pasqualim G, Giugliani R, Matte U & Baldo G. Effects of gene therapy on cardiovascular symptoms of lysosomal storage diseases. Genet Mol Biol. 2019;42:261–85.

  41. Berger KI, Fagondes SC, Giugliani R, Hardy KA, Lee KS, McArdle C, et al. Respiratory and sleep disorders in mucopolysaccharidosis. J Inherit Metab Dis. 2013;36:201–10.

    CAS  PubMed  Google Scholar 

  42. Muhlebach MS, Wooten W, Muenzer J. Respiratory manifestations in mucopolysaccharidoses. Paediatr Respir Rev. 2011;12:133–8.

    PubMed  Google Scholar 

  43. Ou L, Herzog T, Koniar BL, Gunther R, Whitley CB. High-dose enzyme replacement therapy in murine Hurler syndrome. Mol Genet Metab. 2014;111:116–22.

    CAS  PubMed  Google Scholar 

  44. O’Callaghan JP, Sriram K. Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity. Expert Opin Drug Saf. 2005;4:433–42.

    PubMed  Google Scholar 

  45. Siemionow K, Klimczak A, Brzezicki G, Siemionow M, McLain RF. The effects of inflammation on glial fibrillary acidic protein expression in satellite cells of the dorsal root ganglion. Spine. 2009;34:1631–7.

    PubMed  Google Scholar 

  46. Lund TC. Hematopoietic stem cell transplant for lysosomal storage diseases. Pediatr Endocrinol Rev. 2013;11:91–8. Suppl 1.

    PubMed  Google Scholar 

  47. Almeciga-Diaz CJ, Montano AM, Barrera LA, Tomatsu S. Tailoring the AAV2 capsid vector for bone-targeting. Pediatr Res. 2018;84:545–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schuh RS, Bidone J, Poletto E, Pinheiro CV, Pasqualim G, de Carvalho TG, et al. Nasal Administration of cationic nanoemulsions as nucleic acids delivery systems aiming at mucopolysaccharidosis type I gene therapy. Pharm Res. 2018;35:221.

    PubMed  Google Scholar 

  49. Bidone J, Schuh RS, Farinon M, Poletto É, Pasqualim G, de Oliveira PG, et al. Intra-articular nonviral gene therapy in mucopolysaccharidosis I mice. Int J Pharm. 2018;548:151–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by National Council for Scientific and Technological Development (CNPq) (grant numbers 470888/2014-8 and 141742/2014-3), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) (Finance Code 001), Universidade Federal do Rio Grande do Sul, FAPERGS (Grant 02/2017—Programa Pesquisador Gaúcho numbers 17/2551-0001103-1 and 17/2551-0001273-9) and FIPE—Hospital de Clínicas de Porto Alegre, Serviço de Pesquisa Experimental (grant number 2015-0416). RSS would like to thank CNPq for the postdoctoral grant (PDJ grant number 151021/2018-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Matte.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuh, R.S., Gonzalez, E.A., Tavares, A.M.V. et al. Neonatal nonviral gene editing with the CRISPR/Cas9 system improves some cardiovascular, respiratory, and bone disease features of the mucopolysaccharidosis I phenotype in mice. Gene Ther 27, 74–84 (2020). https://doi.org/10.1038/s41434-019-0113-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-019-0113-4

This article is cited by

Search

Quick links