Skip to main content
Log in

A modification of the Langmuir rate equation for diffusion-controlled adsorption kinetics

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

It is widely agreed that the classical Langmuir rate equation cannot be applied for describing the kinetics of adsorption processes whose rate is controlled by diffusive transport phenomena. To overcome this limit, we propose a modification of the Langmuir rate equation, referred to as Diffusion-Controlled Langmuir Kinetics (DCLK), assuming that the macroscopic forward rate of adsorption is inversely related to the square root of time. We tested the DCLK model on experimental adsorption kinetic data. The results indicate that the DCLK model describes the kinetic data better than the traditional pseudo-second order model. Consistently with the intraparticle adsorption/diffusion theory, the adsorption amount predicted by the DCLK model proportionally increases with the square root of time at the beginning of the process. The effect of temperature on the adsorption rate and the relative role played by kinetics and thermodynamics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hlady V, Buijs J (1996) Protein adsorption on solid surfaces. Curr Opin Biotechnol 7:72–77. https://doi.org/10.1016/S0958-1669(96)80098-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lord MS, Foss M, Besenbacher F (2010) Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5:66–78. https://doi.org/10.1016/j.nantod.2010.01.001

    Article  CAS  Google Scholar 

  3. Pelaz B, Del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernández S, De La Fuente JM, Nienhaus GU, Parak WJ (2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9:6996–7008. https://doi.org/10.1021/acsnano.5b01326

    Article  CAS  PubMed  Google Scholar 

  4. Nakanishi K, Sakiyama T, Imamura K (2001) On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 91:233–244. https://doi.org/10.1016/S1389-1723(01)80127-4

    Article  CAS  PubMed  Google Scholar 

  5. Enayatpour B, Rajabi M, Yari M, Reza Mirkhan SM, Najafi F, Moradi O, Bharti AK, Agarwal S, Gupta VK (2017) Adsorption/desorption study of proteins onto multi-walled carbon nanotubes and amino multi-walled carbon nanotubes surfaces as adsorbents. J Mol Liq 231:566–571. https://doi.org/10.1016/j.molliq.2017.02.013

    Article  CAS  Google Scholar 

  6. Salvestrini S, Canzano S, Iovino P, Leone V, Capasso S (2014) Modelling the biphasic sorption of simazine, imidacloprid, and boscalid in water/soil systems. J Environ Sci Health B 49:578–590. https://doi.org/10.1080/03601234.2014.911575

    Article  CAS  PubMed  Google Scholar 

  7. Boivin A, Cherrier R, Schiavon M (2005) A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils. Chemosphere 61:668–676. https://doi.org/10.1016/j.chemosphere.2005.03.024

    Article  CAS  PubMed  Google Scholar 

  8. Bajeer MA, Nizamani SM, Sherazi STH, Bhanger MI (2012) Adsorption and Leaching potential of imidacloprid pesticide through alluvial soil. Am J Anal Chem 3:604–611. https://doi.org/10.4236/ajac.2012.38079

    Article  CAS  Google Scholar 

  9. Kodešová R, Kočárek M, Kodeš V, Drábek O, Kozák J, Hejtmánková K (2011) Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. J Hazard Mater 186:540–550. https://doi.org/10.1016/j.jhazmat.2010.11.040

    Article  CAS  PubMed  Google Scholar 

  10. Iovino P, Leone V, Salvestrini S, Capasso S (2015) Sorption of non-ionic organic pollutants onto immobilized humic acid. Desalin Water Treat 56:55–62. https://doi.org/10.1080/19443994.2014.934732

    Article  CAS  Google Scholar 

  11. Argun ME, Dursun S, Ozdemir C, Karatas M (2007) Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J Hazard Mater 141:77–85. https://doi.org/10.1016/j.jhazmat.2006.06.095

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Song N, Wang K (2019) Preparation and characterization of a novel graphene/biochar composite and its application as an adsorbent for Cd removal from aqueous solution. Korean J Chem Eng 36:678–687. https://doi.org/10.1007/s11814-019-0240-z

    Article  CAS  Google Scholar 

  13. Li M, Messele SA, Boluk Y, El-Din MG (2019) Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: performance and mechanisms. Carbohyd Polym 221:231–241. https://doi.org/10.1016/j.carbpol.2019.05.078

    Article  CAS  Google Scholar 

  14. Han L, Yan J, Qian L, Zhang W, Chen M (2019) Multifunctional Pd/Fe-biochar composites for the complete removal of trichlorobenzene and its degradation products. J Environ Manag 245:238–244. https://doi.org/10.1016/j.jenvman.2019.05.079

    Article  CAS  Google Scholar 

  15. Li J, Li B, Huang H, Lv X, Zhao N, Guo G, Zhang D (2019) Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage. Sci Total Environ 687:460–469. https://doi.org/10.1016/j.scitotenv.2019.05.400

    Article  CAS  PubMed  Google Scholar 

  16. Chen S, Qin C, Wang T, Chen F, Li X, Hou H, Zhou M (2019) Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. J Mol Liq 285:62–74. https://doi.org/10.1016/j.molliq.2019.04.035

    Article  CAS  Google Scholar 

  17. Bergaoui M, Nakhli A, Benguerba Y, Khalfaoui M, Erto A, Soetaredjo FE, Ismadji S, Ernst B (2018) Novel insights into the adsorption mechanism of methylene blue onto organo-bentonite: adsorption isotherms modeling and molecular simulation. J Mol Liq 272:697–707. https://doi.org/10.1016/j.molliq.2018.10.001

    Article  CAS  Google Scholar 

  18. Ghoreishian SM, Raju GSR, Pavitra E, Kwak CH, Han Y, Huh YS (2019) Ultrasound-assisted heterogeneous degradation of tetracycline over flower-like rGO/CdWO4 hierarchical structures as robust solar-light-responsive photocatalysts: optimization, kinetics, and mechanism. Appl Surf Sci 489:110–122. https://doi.org/10.1016/j.apsusc.2019.05.299

    Article  CAS  Google Scholar 

  19. Salvestrini S (2013) Diuron herbicide degradation catalyzed by low molecular weight humic acid-like compounds. Environ Chem Lett 213:359–363. https://doi.org/10.1007/s10311-013-0415-5

    Article  CAS  Google Scholar 

  20. Xu X, Chen W, Zong S, Ren X, Liu D (2019) Atrazine degradation using Fe3O4-sepiolite catalyzed persulfate: Reactivity, mechanism and stability. J Hazard Mater 377:62–69. https://doi.org/10.1016/j.jhazmat.2019.05.029

    Article  CAS  PubMed  Google Scholar 

  21. Cranck J (1975) The mathematics of diffusion. Claredon Press, Oxford

    Google Scholar 

  22. Boyd GE, Adamson AW, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J Am Chem Soc 69:2836–2848. https://doi.org/10.1021/ja01203a066

    Article  CAS  PubMed  Google Scholar 

  23. Viegas RMC, Campinas M, Costa H, Rosa MJ (2014) How do the HSDM and Boyd’s model compare for estimating intraparticle diffusion coefficients in adsorption processes. Adsorption 20:737–746. https://doi.org/10.1007/s10450-014-9617-9

    Article  CAS  Google Scholar 

  24. Hui CW, Chen B, McKay G (2003) Pore-surface diffusion model for batch adsorption processes. Langmuir 19:4188–4196. https://doi.org/10.1021/la026624v

    Article  CAS  Google Scholar 

  25. Weber WJ, Morris JC (1964) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–59

    Google Scholar 

  26. Plazinski W, Rudzinski W (2009) Kinetics of adsorption at solid/Solution interfaces controlled by intraparticle diffusion: a theoretical analysis. J Phys Chem C 113:12495–12501. https://doi.org/10.1021/jp902914z

    Article  CAS  Google Scholar 

  27. Haerifar M, Azizian S (2013) Mixed surface reaction and diffusion-controlled kinetic model for adsorption at the solid/solution interface. J Phys Chem C 117:8310–8317. https://doi.org/10.1021/jp401571m

    Article  CAS  Google Scholar 

  28. Herrera-Hernández EC, Aguilar-Madera CG, Ocampo-Perez R, Espinosa-Paredes G, Núñez-López M (2019) Fractal continuum model for the adsorption-diffusion process. Chem Eng Sci 197:98–108. https://doi.org/10.1016/j.ces.2018.11.058

    Article  CAS  Google Scholar 

  29. Fenti A, Salvestrini S (2018) Analytical solution of the Langmuir-based linear driving force model and its application to the adsorption kinetics of boscalid onto granular activated carbon. Reac Kinet Mech Cat 125:1–13. https://doi.org/10.1007/s11144-018-1435-8

    Article  CAS  Google Scholar 

  30. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  31. Simonin JP (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263. https://doi.org/10.1016/j.cej.2016.04.079

    Article  CAS  Google Scholar 

  32. Plazinski W, Dziuba J, Rudzinski W (2013) Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity. Adsorption 19:1055–1064. https://doi.org/10.1007/s10450-013-9529-0

    Article  CAS  Google Scholar 

  33. Canzano S, Iovino P, Leone V, Salvestrini S, Capasso S (2012) Use and misuse of sorption kinetic data: a common mistake that should be avoided. Adsorpt Sci Technol 30:217–225. https://doi.org/10.1260/0263-6174.30.3.217

    Article  CAS  Google Scholar 

  34. Zhang J (2019) Physical insights into kinetic models of adsorption. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2019.115832

    Article  Google Scholar 

  35. Miyake Y, Ishida H, Tanaka S, Kolev SD (2013) Theoretical analysis of the pseudo-second order kinetic model of adsorption. Application to the adsorption of Ag(I) to mesoporous silica microspheres functionalized with thiol groups. Chem Eng J 218:350–357. https://doi.org/10.1016/j.cej.2012.11.089

    Article  CAS  Google Scholar 

  36. Marczewski AW (2010) Analysis of kinetic langmuir model. Part I: integrated kinetic langmuir equation (IKL): a new complete analytical solution of the langmuir rate equation. Langmuir 26:15229–15238. https://doi.org/10.1021/la1010049

    Article  CAS  PubMed  Google Scholar 

  37. Salvestrini S (2018) Analysis of the Langmuir rate equation in its differential and integrated form for adsorption processes and a comparison with the pseudo first and pseudo second order models. Reac Kinet Mech Cat 123:455–472. https://doi.org/10.1007/s11144-017-1295-7

    Article  CAS  Google Scholar 

  38. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  39. Haworth A (1990) A review of the modelling of sorption from aqueous solution. Adv Colloid Interface Sci 32:43–78. https://doi.org/10.1016/0001-8686(90)80011-N

    Article  CAS  Google Scholar 

  40. Swenson H, Stadie NP (2019) Langmuir’s theory of adsorption: a centennial review. Langmuir 35:5409–5426. https://doi.org/10.1021/acs.langmuir.9b00154

    Article  CAS  PubMed  Google Scholar 

  41. Hibbert DB, Gooding JJ, Erokhin P (2002) Kinetics of irreversible adsorption with diffusion: application to biomolecule immobilization. Langmuir 18:1770–1776. https://doi.org/10.1021/la015567n

    Article  CAS  Google Scholar 

  42. Holten R, Larsbo M, Jarvis N, Stenrød M, Almvik M, Eklo OM (2019) Leaching of five pesticides of contrasting mobility through frozen and unfrozen soil. Vadose Zone J. https://doi.org/10.2136/vzj2018.11.0201

    Article  Google Scholar 

  43. Salvestrini S, Vanore P, Iovino P, Leone V, Capasso S (2015) Adsorption of simazine and boscalid onto acid-activated natural clinoptilolite. Environ Eng Manag J 14:1705–1712

    Article  CAS  Google Scholar 

  44. Salerno J, Bennett CJ, Holman E, Gillis PL, Sibley PK, Prosser RS (2018) Sensitivity of multiple life stages of 2 freshwater mussel species (Unionidae) to various pesticides detected in Ontario (Canada) surface waters. Environ Toxicol Chem 37:2871–2880. https://doi.org/10.1002/etc.4248

    Article  CAS  PubMed  Google Scholar 

  45. Lee S, Karplus M (1987) Kinetics of diffusion-influenced bimolecular reactions in solution. I. General formalism and relaxation kinetics of fast reversible reactions. J Chem Phys 86:1883–1903. https://doi.org/10.1063/1.452140

    Article  CAS  Google Scholar 

  46. Rohwer JM, Hofmeyr JHS (2010) Kinetic and thermodynamic aspects of enzyme control and regulation. J Phys Chem B 114:16280–16289. https://doi.org/10.1021/jp108412s

    Article  CAS  PubMed  Google Scholar 

  47. Periasamy N, Doraiswamy S, Venkataraman B, Fleming GR (1988) Diffusion controlled reactions: experimental verification of the time-dependent rate equation. J Chem Phys 89:4799–4806. https://doi.org/10.1063/1.455673

    Article  CAS  Google Scholar 

  48. Rahn JR, Hallock RB (1995) Antibody binding to antigen-coated substrates studied with surface plasmon oscillations. Langmuir 11:650–654. https://doi.org/10.1021/la00002a049

    Article  CAS  Google Scholar 

  49. Waite TR (1960) Bimolecular reaction rates in solids and liquids. J Chem Phys 32:21–23. https://doi.org/10.1063/1.1700904

    Article  CAS  Google Scholar 

  50. Ilkovič D (1934) Polarographic studies with the dropping mercury kathode. Part XLIV. The dependence of limiting currents on the diffusion constant, on the rate of dropping and on the size of drops. Collect Czechoslov Chem Commun 6:498–513. https://doi.org/10.1135/cccc19340498

    Article  Google Scholar 

  51. Miyazaki CM, Mishra R, Kinahan DJ, Ferreira M, Ducrée J (2017) Polyethylene imine/graphene oxide layer-by-layer surface functionalization for significantly improved limit of detection and binding kinetics of immunoassays on acrylate surfaces. Colloids Surf B 158:167–174. https://doi.org/10.1016/j.colsurfb.2017.06.042

    Article  CAS  Google Scholar 

  52. Shen L, Chen Z (2007) Critical review of the impact of tortuosity on diffusion. Chem Eng Sci 62:3748–3755. https://doi.org/10.1016/j.ces.2007.03.041

    Article  CAS  Google Scholar 

  53. Abdelaziz OY, Hulteberg CP (2017) Physicochemical characterisation of technical lignins for their potential valorisation. Waste Biomass Valorization 8:859–869. https://doi.org/10.1007/s12649-016-9643-9

    Article  CAS  Google Scholar 

  54. Salvestrini S, Vanore P, Bogush A, Mayadevi S, Campos LC (2017) Sorption of metaldehyde using granular activated carbon. J Water Reuse Desalin 7:280–287. https://doi.org/10.2166/wrd.2016.074

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Salvestrini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvestrini, S. A modification of the Langmuir rate equation for diffusion-controlled adsorption kinetics. Reac Kinet Mech Cat 128, 571–586 (2019). https://doi.org/10.1007/s11144-019-01684-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01684-9

Keywords

Navigation