Skip to main content
Log in

Mechanistic details for the reaction of methyl acrylate radical anion: a DFT study

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the present work, based on the reported experimental observations, theoretical methods were employed to study the electron-induced reaction of methyl acrylate. Our calculations revealed that two routes are possible among ten proposed pathways for this reaction. In both of these routes, the reaction proceeds via four distinct steps including dimerization, cyclization, methanol elimination, and trimerization. The results showed that the most favorable mechanism proceeds via a stepwise pathway involving dimethyl acrylate radical anion. Finally, structural, kinetics and thermodynamics of both possible paths have been calculated and compare to obtain the most possible route for this reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alfassi ZB (1999) General aspects of the chemistry of radicals. Wiley, Hoboken

    Google Scholar 

  2. Halliwell B (1993) The chemistry of free radicals. Toxic Ind Health 9(1–2):1–21

    CAS  Google Scholar 

  3. Fossey J, Lefort D, Sorba J (1995) Free radicals in organic chemistry. Wiley, Hoboken

    Google Scholar 

  4. Lightfoot PD, Cox RA, Crowley JN, Destriau M, Hayman GD, Jenkin ME, Moortgat GK, Zabel F (1992) Organic peroxy radicals: kinetics, spectroscopy and tropospheric chemistry. Atmos Environ Part A 26(10):1805–1961

    Article  Google Scholar 

  5. Bergendi L, Beneš L, Ďuračková Z, Ferenčik M (1999) Chemistry, physiology and pathology of free radicals. Life Sci 65(18):1865–1874

    Article  CAS  Google Scholar 

  6. Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine. Oxford University Press, Oxford

    Book  Google Scholar 

  7. Hamilton RJ, Kalu C, Prisk E, Padley FB, Pierce H (1997) Chemistry of free radicals in lipids. Food Chem 60(2):193–199

    Article  CAS  Google Scholar 

  8. Jaeglé L, Jacob DJ, Brune WH, Wennberg PO (2001) Chemistry of HOx radicals in the upper troposphere. Atmos Environ 35(3):469–489

    Article  Google Scholar 

  9. Tyndall GS, Cox RA, Granier C, Lesclaux R, Moortgat GK, Pilling MJ, Ravishankara AR, Wallington TJ (2001) Atmospheric chemistry of small organic peroxy radicals. J Geophys Res Atmos 106(D11):12157–12182

    Article  CAS  Google Scholar 

  10. Holy NL (1974) Reactions of the radical anions and dianions of aromatic hydrocarbons. Chem Rev 74(2):243–277

    Article  CAS  Google Scholar 

  11. Landais Y (2018) Free-radical synthesis and functionalization of heterocycles. Springer, Cham

    Book  Google Scholar 

  12. Born M, Ingemann S, Nibbering NMM (1997) Formation and chemistry of radical anions in the gas phase. Mass Spectrom Rev 16(4):181–200

    Article  CAS  Google Scholar 

  13. Gosztola D, Niemczyk MP, Svec W, Lukas AS, Wasielewski MR (2000) Excited doublet states of electrochemically generated aromatic imide and diimide radical anions. J Phys Chem A 104(28):6545–6551

    Article  CAS  Google Scholar 

  14. Augusto O, Bonini MG, Amanso AM, Linares E, Santos CCX, SlLD Menezes (2002) Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. Free Radical Biol Med 32(9):841–859

    Article  CAS  Google Scholar 

  15. Ahmed MM, Barbati S, Doumenq P, Chiron S (2012) Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination. Chem Eng J 197:440–447

    Article  Google Scholar 

  16. Du J, Espelt LR, Guzei IA, Yoon TP (2011) Photocatalytic reductive cyclizations of enones: divergent reactivity of photogenerated radical and radical anion intermediates. Chem Sci 2(11):2115–2119

    Article  CAS  Google Scholar 

  17. Herrmann H, Ervens B, Jacobi H-W, Wolke R, Nowacki P, Zellner R (2000) A chemical aqueous phase radical mechanism for tropospheric chemistry. J Atmos Chem 36(3):231–284

    Article  CAS  Google Scholar 

  18. Nozière B, Ekström S, Alsberg T, Holmström S (2010) Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols. Geophys Res Lett 37(5):342–349

    Article  Google Scholar 

  19. Yoon T, Amador A, Sherbrook E, Lu Z (2017) A general protocol for radical anion [3 + 2] cycloaddition enabled by Tandem lewis acid photoredox catalysis. Synthesis 50(03):539–547

    Article  Google Scholar 

  20. Bissinger P, Braunschweig H, Damme A, Hörl C, Krummenacher I, Kupfer T (2015) Boron as a powerful reductant: synthesis of a stable boron-centered radical-anion radical-cation pair. Angew Chem Int Ed 54(1):359–362

    Article  CAS  Google Scholar 

  21. Studer A, Curran DP (2011) Organocatalysis and C-H activation meet radical- and electron-transfer reactions. Angew Chem Int Ed 50(22):5018–5022

    Article  CAS  Google Scholar 

  22. Gu Z-Y, Cao J-J, Wang S-Y, Ji S-J (2016) The involvement of the trisulfur radical anion in electron-catalyzed sulfur insertion reactions: facile synthesis of benzothiazine derivatives under transition metal-free conditions. Chem Sci 7(7):4067–4072

    Article  CAS  Google Scholar 

  23. Akhgarnusch A, Höckendorf RF, Hao Q, Jäger KP, Siu C-K, Beyer MK (2013) Carboxylation of methyl acrylate by carbon dioxide radical anions in gas-phase water clusters. Angew Chem Int Ed 52(35):9327–9330

    Article  CAS  Google Scholar 

  24. Lengyel J, Ončák M, Fedor J, Kočišek J, Pysanenko A, Beyer MK, Fárník M (2017) Electron-triggered chemistry in HNO3/H2O complexes. Phys Chem Chem Phys 19(19):11753–11758

    Article  CAS  Google Scholar 

  25. van der Linde C, Tang W-K, Siu C-K, Beyer MK (2016) Electrons mediate the gas-phase oxidation of formic acid with ozone. Chem Eur J 22(36):12684–12687

    Article  Google Scholar 

  26. Franco C, Burrezo PM, Lloveras V, Caballero R, Alcón I, Bromley ST, Mas-Torrent M, Langa F, López Navarrete JT, Rovira C, Casado J, Veciana J (2017) Operative mechanism of hole-assisted negative charge motion in ground states of radical-anion molecular wires. J Am Chem Soc 139(2):686–692

    Article  CAS  Google Scholar 

  27. Yus M, Herrera RP, Guijarro A (2002) On the mechanism of arene-catalyzed lithiation: the role of arene dianions—naphthalene radical anion versus naphthalene dianion. Chem Eur J 8(11):2574–2584

    Article  CAS  Google Scholar 

  28. Jäger KP, Höckendorf RF, Beyer MK (2012) Electron induced reactions of unsaturated hydrocarbons in water clusters. Int J Mass Spectrom 330–332:246–253

    Article  Google Scholar 

  29. Ranjbari MA, Tavakol H (2018) Theoretical study of the possible mechanisms for the synthesis of dialkyl thiourea from dithiocarbamate. Heteroat Chem 29(3):e21421

    Article  Google Scholar 

  30. Shahabi D, Tavakol H (2018) A DFT study on the catalytic ability of aluminum doped graphene for the initial steps of the conversion of methanol to gasoline. Comput Theor Chem 1127:8–15

    Article  CAS  Google Scholar 

  31. Tavakol H (2011) Kinetic and thermodynamic study of inter- and intramolecular proton transfer in N′-acetyl formohydrazide tautomers. Int J Quantum Chem 111(14):3717–3724

    CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ Gaussian 09, Revision A.01

  33. Andersson MP, Uvdal P (2005) New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6–311+G(d, p). J Phys Chem A 109(12):2937–2941

    Article  CAS  Google Scholar 

  34. Tavakol H (2012) DFT and MP2 study of isomery scheme in Formazan and intermolecular and intramolecular proton transfer between its tautomers. Int J Quantum Chem 112(4):1215–1224

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Academy of Science (OAW) under the JESH program. I appreciate “institut für ionenphysik und angewandte physic”, University of Innsbruck (UIBK) and also I have special thanks to Professor Martin Beyer (the head of the institute) for providing research facilities for this work. The computational results presented have been achieved (in part) using the HPC infrastructure LEO of the University of Innsbruck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Tavakol.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakol, H., Ranjbari, M.A. & Jafari-Chermahini, M.T. Mechanistic details for the reaction of methyl acrylate radical anion: a DFT study. Reac Kinet Mech Cat 128, 629–643 (2019). https://doi.org/10.1007/s11144-019-01647-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01647-0

Keywords

Navigation