Skip to main content
Log in

Kinetic modeling of cottonseed oil transesterification with ethanol

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the kinetic behavior of cottonseed oil transesterification with ethanol based on a pseudo first order kinetic model. A 23 factorial planning with three central points was performed by considering temperature, catalyst concentration and alcohol/oil molar ratio as dependent variables and biodiesel concentration as response signal. It was observed that the highest conversion was obtained for the following conditions: temperature between 50 and 70 °C, high alcohol/oil molar ratio and low percentage of catalyst. All samples were collected during time intervals of 5–10–15–30–60 and 90 min. A set of kinetic constant values were obtained for each operating condition ranging from 72 to 23l min−1. Indeed, it was possible to obtain the kinetic parameters frequency factor k0 = 5807.05 dm3*mol−1*min−1 and Ea = 16.84 kJ*mol−1 for biodiesel production with ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GC:

Gas chromatography

A:

Alcohol

D:

Diglyceride molecule

E:

Ester

M:

Monoglyceride molecule

G:

Glycerin molecule

Ti :

Triglyceride molecule

T:

Temperature

k1 :

Kinetic constant of triglyceride consumption

k2 :

Kinetic constant of diglyceride consumption

k3 :

Kinetic constant of monoglyceride consumption

CT :

Triglyceride concentration

CD :

Diglyceride concentration

CM :

Monoglyceride concentration

CAl :

Alcohol concentration

K:

Overall kinetic constant

Me/Mo :

Ethanol/oil molar mass

A/O :

Ethanol/oil molar ratio

\({\text{V}}_{{{\text{H}}_{ 2} {\text{SO}}_{ 4} }}\) :

Volume of H2SO4

MMH2SO4 :

Molar mass of sulfuric acid

mr :

Initial total mass of the reaction system (moil + mAlcohol + mKOH)

\({\text{P}}_{{{\text{H}}_{ 2} {\text{SO}}_{ 4} }}\) :

Purity of the sulfuric acid

CO :

Oil concentration

kr :

Pseudo first order kinetic constant

k ra :

Second order kinetic constant

EA :

Activation energy

T:

Reaction temperature

PID:

Proportional integral derivative

FID:

Flame ionization detector

EN:

European standard

vH2SO4 :

Volume of sulfuric acid

MAL :

Mass of ethanol

A/O :

Ethanol/oil molar ratio

mKOH :

Mass of potassium hydroxide

moil :

Mass of oil

Cat:

Percentage of catalyst in terms of oil mass

mr :

Initial total mass of the system

X:

Conversion

RR:

Molar ratio of alcohol

C:

Catalyst concentration

K:

Kelvin

CETENE:

Northeast strategic technological center

FE :

Excess to neutralize the KOH

MMHKOH :

Molar mass of the potassium hidroxide.

\({\text{D}}_{{{\text{H}}_{ 2} {\text{SO}}_{ 4} }}\) :

Density of the sulfuric acid.

NH :

Number of hydrogen of the acid

Cfact :

Correction factor of 30

References

  1. Rathore VS, Tyagi NB, Badoni RP (2012) Fuel 15:101–109

    Google Scholar 

  2. Alam MJ, Shawon SK, Sultana M, Rahman MdWMd, Khan MR (2014) Power Energy Syst: Tow Sust Energy 1:1–5

    Google Scholar 

  3. Onukwul OD, Emembolu LN, Ude CN, Aliozo SO, Menkiti MC (2016) Egypt J Petrol 2:1–8

    Google Scholar 

  4. Jain S, Sharma MP (2010) Renew Sust Energy Rev 14:763–771

    Article  CAS  Google Scholar 

  5. Chen JX, Hu XG, Wang XY, Xu YX, Hu EZ (2012) Adv Mat Res 578:73–77

    CAS  Google Scholar 

  6. Chen J, Wang X, Hu E, Yufu XX, Hu PL, Jiang S (2011) Int Conf Mat Renew Energy Env 1:288–293

    Article  CAS  Google Scholar 

  7. He W, Fang Z, Guo K (2013) Appl Mech Mat 36:343–346

    Article  Google Scholar 

  8. Joshi HC, Toler J, Walker T (2008) J A O Chem Soc. 85:357–363

    Article  CAS  Google Scholar 

  9. Silva RJMCL, Souza TPCS, Silva JP, Pacheco JGA, Silva JFM (2017) Braz J Chem Eng 34:811–819

    Article  CAS  Google Scholar 

  10. Lilja J, Warna J, Salmi T, Pettersson LJ, Ahlkvist J, Grénman H, Rönnholm M, Murzin DY (2005) Chem Eng J 115:1–12

    Article  CAS  Google Scholar 

  11. Alves MJS, Nascimento M, Pereira IG, Maria IM, Cardoso VL, Reis M (2013) Renew Energy 58:15–20

    Article  CAS  Google Scholar 

  12. Aranda DAG, Goncalves JD, Peres JS (2010) J Phys Org Chem 22:709–716

    Article  Google Scholar 

  13. Aniya VK, Muktham RK, Alka K, Satyavathi B (2015) Fuel 161:137–145

    Article  CAS  Google Scholar 

  14. Aydin H, Baydin H (2010) Renew Energy 35:588–592

    Article  CAS  Google Scholar 

  15. He BB, Singh AP, Thompson JC (2006) Am Soc Agric Biol Eng 49:107–112

    CAS  Google Scholar 

  16. Jain SK, Kumar S, Chaube A (2012) Int J Chem Eng Appl 2:101–109

    CAS  Google Scholar 

  17. Bikou E, Louloudi AP (1999) Chem Eng Technol 22:70–75

    Article  CAS  Google Scholar 

  18. EN 14103 Fat and oil derivatives-fatty acid methyl esters (FAME)—Determination of ester and linolenic acid methyl ester contents, CEN, 2003

  19. Souza TPC (2015), Thesis, Chemical Engineering, Federal University of Pernambuco Recife-PE

  20. Souza TPC, Stragevitch L, Knoechelmann A, Pacheco JGA, Silva JMF (2014) Fuel Process Technol 123:75–81

    Article  CAS  Google Scholar 

  21. Stamenkovic OS, Todorovic ZB, Lazic ML, Veljkovic VB, Skala DU (2008) Bioresour Technol 99:1131–1140

    Article  CAS  Google Scholar 

  22. EN 14214: Automotive fuels- fatty acid methyl esters (FAME), Requirements and Test Methods, European standard for biodiesel, 2010

  23. National Agency of Petroleum, Natural Gas and Biofuel, ANP. Resolution Nº 14 of 11.5.2012—DOU 18.5.2012. Biodiesel Especification of Technical Note ANP nº 4 (2012)

  24. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, Cham

    Book  Google Scholar 

  25. Melo JCMT (2007), Thesis, Chemical Engineering, Federal University of Pernambuco Recife-PE

  26. Ude CN, Okechukwu D (2019) React Kinet Mech Cat 127:1039–1058

    Article  CAS  Google Scholar 

  27. Rashid U, Anwar F, Knothe G (2009) Fuel Process Technol 90:1157–1163

    Article  CAS  Google Scholar 

  28. Kundu A, Mukherjee A, Halder G, Datta D (2016) Int J Res Eng Technol 1:31–44

    Google Scholar 

  29. Silva NL, Batistella CB, Filho RM, Maciel MRW (2009) Energy Fuels 23:5636–5642

    Article  Google Scholar 

  30. Fogler, HS (1999) Elements of chemical reaction engineering. Englewood cliffs, New Jersey

    Google Scholar 

  31. Sajjadi SA, Saba F, Ghadirzadeh A, Fonzo F (2017) Powder Technol 305:704–713

    Article  CAS  Google Scholar 

  32. Darnoko D, Cheryan M (2000) J Am Oil Chem Soc 77:1263–1267

    Article  CAS  Google Scholar 

  33. Vicente G, Martinez M, Aracil J, Esteban A (2005) Ind Eng Chem Res 44:5447–5454

    Article  CAS  Google Scholar 

  34. Stamenkovic O, Todorovic Z, Lazic M, Veljkovic V, Skala D (2008) Bioresour Technol 99:1131–1140

    Article  CAS  Google Scholar 

  35. Ana VM, Olivera SS, Zoran B, Todorovic MLL, Vlada BV (2009) Fuel 89:665–671

    Google Scholar 

  36. Freedman B, Buttefield RO, Pryde EH (1986) J Am Oil Chem Soc 1986(63):1375–1380

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to Northeast Strategic Technological Center (CETENE) for providing raw materials and access to the industrial plant and Federal University of Pernambuco for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. F. Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, T.P.C., Silva, R.J., Melo, J.C. et al. Kinetic modeling of cottonseed oil transesterification with ethanol. Reac Kinet Mech Cat 128, 707–722 (2019). https://doi.org/10.1007/s11144-019-01661-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01661-2

Keywords

Navigation