Skip to main content
Log in

Synthesis of hierarchical ZSM-5 aggregates by an alkali-treated seeds method with cetyltrimethylammonium bromide for the methanol to gasoline reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of hierarchical ZSM-5 aggregates with a relatively low SiO2/Al2O3 ratio (~ 50) were successfully synthesized using alkali-treated commercial ZSM-5 as seeds and cetyltrimethylammonium bromide (CTAB) as mesogenous template. The effect of the amounts of CTAB on the physicochemical and catalytic properties of the synthesized catalysts was characterized by XRD, FE-SEM, FE-TEM, N2 physical adsorption, ICP-OES, NH3-TPD, Py-IR and TGA. Moreover, the possible formation mechanism of the hierarchical ZSM-5 aggregates was studied. The results indicated that the mesoporosity of the hierarchical ZSM-5 aggregates was greatly enhanced with the addition of CTAB. The primary crystal size of the ZSM-5 aggregates significantly decreased owing to the protective effect of CTAB, which inhibits the further crystal growth. The hierarchical ZSM-5 aggregates prepared with addition of a suitable amount of CTAB showed large specific surface areas and large external surface areas, abundant intercrystalline mesopores and appropriate concentration of acid sites, which resulted in excellent catalytic performance in the methanol to gasoline reaction. The stability of the catalyst was remarkably improved and the gasoline yield was given a rise of 10% compared with the catalyst prepared in the absence of CTAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang Y, Wang X, Xu J, Sun H, Wu C, Yan Z, Ji S (2018) J Inorg Mater 33:1193–1199

    Google Scholar 

  2. Chang CD, Silvestri AJ (1977) J Catal 47:249–259

    CAS  Google Scholar 

  3. Bjørgen M, Joensen F, Holm MS, Olsbye U, Lillerud KP, Svelle S (2008) Appl Catal A 345:43–50

    Google Scholar 

  4. Olah GA, Goeppert A, Prakash SGK (2010) Angew Chem Int Ed 44:2636–2639

    Google Scholar 

  5. Gayubo AG, Alonso A, Valle B, Aguayo AT, Bilbao J (2010) Appl Catal B 97:299–306

    CAS  Google Scholar 

  6. Saxena SK, Viswanadham N, Al-Muhtaseb AH (2014) J Ind Eng Chem 20:2876–2882

    CAS  Google Scholar 

  7. Chen L, Li X, Rooke JC, Zhang Y, Yang X, Tang Y, Xiao F, Su B (2012) J Mater Chem 22:17381–17403

    CAS  Google Scholar 

  8. Shen K, Qian W, Wang N, Su C, Wei F (2013) J Am Chem Soc 135:15322–15325

    CAS  PubMed  Google Scholar 

  9. Soltanali S, Halladj R, Ektefa F (2015) J Clust Sci 26:565–579

    CAS  Google Scholar 

  10. Wan Z, Li G, Wang C, Yang H, Zhang D (2018) Appl Catal A 549:141–151

    Google Scholar 

  11. Benito PL, Gayubo AG, Aguayo AT, Olazar M, Bilbao J (1996) Ind Eng Chem Res 35:3991–3998

    CAS  Google Scholar 

  12. Froment GF, Meyer JD, Derouane EG (1990) J Catal 124:391–400

    CAS  Google Scholar 

  13. Schmidt F, Hoffmann C, Giordanino F, Bordiga S, Simon P, Carrillo-Cabrera W, Kaskel S (2013) J Catal 307:238–245

    CAS  Google Scholar 

  14. Li Y, Wang H, Dong M, Li J, Qin Z, Wang J, Fan W (2015) RSC Adv 5:66301–66310

    CAS  Google Scholar 

  15. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Nature 461:246–249

    CAS  PubMed  Google Scholar 

  16. Kim Y, Kim K, Ryoo R (2017) Chem Mater 29:1752–1757

    CAS  Google Scholar 

  17. Mintova S, Gilson J, Valtchev V (2013) Nanoscale 5:6693–6703

    CAS  PubMed  Google Scholar 

  18. Srivastava R, Sarmah B, Satpati B (2015) RSC Adv 5:25998–26006

    CAS  Google Scholar 

  19. Tao Y, Kanoh H, Abrams L, Kaneko K (2006) Chem Rev 106:896–910

    CAS  PubMed  Google Scholar 

  20. Zhu Y, Hua Z, Zhou J, Wang L, Zhao J, Gong Y, Wu W, Ruan M, Shi J (2011) Chemistry 17:14618–14627

    CAS  PubMed  Google Scholar 

  21. Yang Z, Xia Y, Mokaya R (2010) Adv Mater 16:727–732

    Google Scholar 

  22. Saito H, Inagaki S, Kojima K, Han Q, Yabe T, Ogo S, Kubota Y, Sekine Y (2018) Appl Catal A 549:76–81

    CAS  Google Scholar 

  23. Wei Z, Chen L, Cao Q, Wen Z, Zhou Z, Xu Y, Zhu X (2017) Fuel Process Technol 162:66–77

    CAS  Google Scholar 

  24. Gharibi Kharaji A, Beheshti M, Repke JU, Tangestani-nejad S, Görke O, Godini HR (2019) React Kinet Mech Cat 127:375–390

    CAS  Google Scholar 

  25. Meng F, Wang Y, Wang S (2016) RSC Adv 6:58586–58593

    CAS  Google Scholar 

  26. Stepacheva AA, Doluda VY, Lakina NV, Molchanov VP, Sidorov AI, Matveeva VG, Sulman MG, Sulman EM (2018) React Kinet Mech Cat 124:807–822

    CAS  Google Scholar 

  27. Su L, Liu L, Zhuang J, Wang H, Li Y, Shen W, Xu Y, Bao X (2003) Catal Lett 91:155–167

    CAS  Google Scholar 

  28. Abelló S, Bonilla A, Pérez-Ramírez J (2009) Appl Catal A 364:191–198

    Google Scholar 

  29. Serrano DP, Escola JM, Pizarro P (2013) Chem Soc Rev 42:4004–4035

    CAS  PubMed  Google Scholar 

  30. Xiao F, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su D, Schlögl R, Yokoi T, Tatsumi T (2006) Angew Chem Int Ed 118:3162–3165

    Google Scholar 

  31. Wang H, Pinnavaia TJ (2006) Angew Chem Int Ed 118:7765–7768

    Google Scholar 

  32. Chen H, Wang Y, Meng F, Li H, Wang S, Sun C, Wang S, Wang X (2016) RSC Adv 6:76642–76651

    CAS  Google Scholar 

  33. Chen H, Wang Y, Sun C, Wang X, Wang C (2018) Catal Commun 112:10–14

    CAS  Google Scholar 

  34. Liu H, Zhang S, Xie S, Zhang W, Xin W, Liu S, Xu L (2018) Chin J Catal 39:167–180

    CAS  Google Scholar 

  35. Rani P, Srivastava R, Satpati B (2016) Cryst Growth Des 16:3323–3333

    CAS  Google Scholar 

  36. Meng L, Zhu X, Wannapakdee W, Pestman R, Goesten MG, Gao L, van Hoof AJF, Hensen EJM (2018) J Catal 361:135–142

    CAS  Google Scholar 

  37. Feng R, Wang X, Lin J, Li Z, Hou K, Yan X, Hu X, Yan Z, Rood MJ (2018) Microporous Mesoporous Mater 270:57–66

    CAS  Google Scholar 

  38. Feng H, Chen X, Shan H, Schwank JW (2010) Catal Commun 11:700–704

    CAS  Google Scholar 

  39. Gonçalves ML, Dimitrov LD, Jordão MH, Wallau M, Urquieta-González EA (2008) Catal Today 133–135:69–79

    Google Scholar 

  40. Peng L, Xu X, Yao X, Liu H, Gu X (2018) J Membr Sci 549:446–455

    CAS  Google Scholar 

  41. Gu F, Wei F, Yang J, Lin N, Lin W, Wang Y, Zhu J (2010) Chem Mater 22:2442–2450

    CAS  Google Scholar 

  42. Li M, Oduro IN, Zhou Y, Huang Y, Fang Y (2016) Microporous Mesoporous Mater 221:108–116

    CAS  Google Scholar 

  43. Jo C, Cho K, Kim J, Ryoo R (2014) Chem Commun 50:4175–4177

    CAS  Google Scholar 

  44. Song G, Xue D, Xue J, Li F (2017) Microporous Mesoporous Mater 248:192–203

    CAS  Google Scholar 

  45. Liu M, Li J, Jia W, Qin M, Wang Y, Tong K, Chen H, Zhu Z (2015) RSC Adv 5:9237–9240

    CAS  Google Scholar 

  46. Wang Q, Xu S, Chen J, Wei Y, Li J, Fan D, Yu Z, Qi Y, He Y, Xu S, Yuan C, Zhou Y, Zhang M, Wang J, Su B, Liu Z (2014) RSC Adv 4:21479–21491

    CAS  Google Scholar 

  47. Huang L, Guo W, Deng P, Xue Z, Li Q (2000) J Phys Chem B 104:2817–2823

    CAS  Google Scholar 

  48. Wang X, Chen H, Meng F, Gao F, Sun C, Sun L, Wang S, Wang L, Wang Y (2017) Microporous Mesoporous Mater 243:271–280

    CAS  Google Scholar 

  49. Wang X, Meng F, Chen H, Gao F, Wang Y, Han X, Fan C, Sun C, Wang S, Wang L (2017) C R Chim 20:1083–1092

    CAS  Google Scholar 

  50. Chen H, Wang Y, Sun C, Gao F, Sun L, Wang C, Wang Z, Wang X (2017) Catal Commun 100:107–111

    CAS  Google Scholar 

  51. Sun L, Wang Y, Chen H, Sun C, Meng F, Gao F, Wang X (2018) Catal Today 316:91–98

    CAS  Google Scholar 

  52. Emeis CA (1993) J Catal 141:347–354

    CAS  Google Scholar 

  53. Meng F, Wang Y, Wang L, Yang R, Zhang T (2011) J Mol Catal A 335:105–111

    CAS  Google Scholar 

  54. Ahmadpour J, Taghizadeh M (2015) J Nat Gas Sci Eng 23:184–194

    CAS  Google Scholar 

  55. Xu D, Feng J, Che S (2014) Dalton Trans 43:3612–3617

    CAS  PubMed  Google Scholar 

  56. Jin L, Liu S, Xie T, Wang Y, Guo X, Hu H (2014) React Kinet Mech Cat 113:575–584

    CAS  Google Scholar 

  57. Li Y, Liu S, Zhang Z, Xie S, Zhu X, Xu L (2008) Appl Catal A 338:100–113

    CAS  Google Scholar 

  58. Zhang H, Hu Z, Huang L, Zhang H, Song K, Wang L, Shi Z, Ma J, Zhuang Y, Shen W, Zhang Y, Xu H, Tang Y (2015) ACS Catal 5:2548–2558

    CAS  Google Scholar 

  59. Fan C, Wang Y, Li H, Wang X, Sun C, Zhang X, Wang C, Wang S (2018) New J Chem 42:17043–17055

    CAS  Google Scholar 

  60. Lee JY, Park SM, Saha SK, Cho SJ, Seo G (2011) Appl Catal B 108–109:61–71

    Google Scholar 

  61. Guisnet M, Costa L, Ribeiro FR (2009) J Mol Catal A 305:69–83

    CAS  Google Scholar 

  62. Hu H, Lyu J, Rui J, Cen J, Zhang Q, Wang Q, Han W, Li X (2016) Catal Sci Technol 6:2647–2652

    CAS  Google Scholar 

  63. Qin Z, Lakiss L, Tosheva L, Gilson JP, Vicente A, Fernandez C, Valtchev V (2014) Adv Funct Mater 24:257–264

    CAS  Google Scholar 

  64. Palcic A, Ordomsky VV, Qin Z, Georgieva V, Valtchev V (2018) Chem Eur J 24:13136–13149

    CAS  PubMed  Google Scholar 

  65. Kong L, Chen H, Tai J, Shen J, Zhang S, Chen J (2009) Mater Lett 63:343–345

    CAS  Google Scholar 

  66. Zheng B, Wan Y, Yang W, Ling F, Xie H, Fang X, Guo H (2014) Chin J Catal 35:1800–1810

    CAS  Google Scholar 

  67. Bakhtiar SH, Wang X, Ali S, Yuan F, Li Z, Zhu Y (2018) Dalton Trans 47:9861–9870

    CAS  PubMed  Google Scholar 

  68. Ordomsky VV, Ivanova II, Knyazeva EE, Yuschenko VV, Zaikovskii VI (2012) J Catal 295:207–216

    CAS  Google Scholar 

  69. Kong L, Jiang Z, Zhao J, Liu J, Shen B (2014) Catal Lett 144:1609–1616

    CAS  Google Scholar 

  70. Zhang W, Ming W, Hu S, Qin B, Ma J, Li R (2018) Materials 11:651–661

    PubMed Central  Google Scholar 

  71. Liu H, Xie S, Xin W, Liu S, Xu L (2016) Catal Sci Technol 6:1328–1342

    CAS  Google Scholar 

  72. Wang L, Yang W, Xin C, Ling F, Sun W, Fang X, Yang R (2012) Mater Lett 69:16–19

    CAS  Google Scholar 

  73. Kim J, Choi M, Ryoo R (2010) J Catal 269:219–228

    CAS  Google Scholar 

  74. Huang H, Zhu H, Zhang Q, Li C (2019) Korean J Chem Eng 36:210–216

    CAS  Google Scholar 

  75. Rownaghi AA, Hedlund J (2011) Ind Eng Chem Res 50:11872–11878

    CAS  Google Scholar 

  76. Bjørgen M, Joensen F, Lillerud KP, Olsbye U, Svelle S (2009) Catal Today 142:90–97

    Google Scholar 

  77. Bjørgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U (2007) J Catal 249:195–207

    Google Scholar 

  78. Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud KP, Kolboe S, Bjørgen M (2006) J Am Chem Soc 128:14770–14771

    CAS  PubMed  Google Scholar 

  79. Strizhak P, Zhokh A, Trypolskyi A (2017) React Kinet Mech Cat 123:247–268

    Google Scholar 

  80. Fu T, Chang J, Shao J, Li Z (2017) J Energy Chem 26:139–146

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (21276183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaquan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Wang, Y., Sun, C. et al. Synthesis of hierarchical ZSM-5 aggregates by an alkali-treated seeds method with cetyltrimethylammonium bromide for the methanol to gasoline reaction. Reac Kinet Mech Cat 128, 1079–1096 (2019). https://doi.org/10.1007/s11144-019-01671-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01671-0

Keywords

Navigation