Skip to main content
Log in

Multi-dimensional Crystal Structuring of Complex Metal Oxide Catalysts of Group V and VI Elements by Unit-Assembling

  • Original Article
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Four new porous crystalline complex metal oxide families based on group V and VI elements, all of which are synthesized through unit-assembling, are introduced along with crystal structure formation mechanism. Polyoxometalates (POMs) are utilized as building units and assembled for constructing microporous complex metal oxides. Assembling of MoVO-POMs having pentagonal units of [Mo6O21] with {VO} linkers under hydrothermal conditions forms microporous orthorhombic (NH4)4[Mo30V4O106] {VO}6 oxide and trigonal (NH4)3[Mo19.5V1.5O69] {VO}6 oxide. Assembling of ε-Keggin Mo-POMs with bismuth ions as a linker under a hydrothermal condition produces a cubic (NH4)4[Mo9.4V3.6O40] {Bi}2 crystal with cages and channels with the diameter sizes of 0.77 and 0.34 nm, respectively. One dimensional anionic tungstosellenate molecular wire building block, [SeW6O21]2−n, is first formed by linear connection of hexagonal tungstosellenate POM units [SeW6O27] and then linked with the CoII ion to form a crystalline microporous materials, (NH4)0.4 [SeW6O21] {Co(OH)}1.3. [W4O16] building blocks are orderly connected with {VO} linkers to form a microporous framework (K1.5(NH4)0.2H0.3[W4O16]{VO}3) with a pore diameter of 0.43 nm which is fully opened and is accessible to small molecules. These new porous crystalline complex metal oxides showed high catalytic performance for alkane oxidation, aldehyde oxidation, alcohol oxidation, H2O2 oxidation, NH3-SCR, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vedrine JC (2017) Catalysts 7:341

    Article  Google Scholar 

  2. Mahyuddin MH, Staykov A, Shiota Y, Miyanishi M, Yoshizawa K (2017) ACS Catal 7:3741–3751

    Article  CAS  Google Scholar 

  3. Lukashuk L, Föttinger K, Mathery J (2018) Tech Rev 62:316–331

    CAS  Google Scholar 

  4. Wunsch MR, Lehnig R, Janke C, Trapp O (2018) Anal Chem 90:9256–9263

    Article  CAS  Google Scholar 

  5. Heine C, Mävecker M, Stotz E, Rosowski F, Knop-Gericke A, Trunschke A, Eichelbaum M, Schlögel R (2014) J Phys Chem C 118:20405–20412

    Article  CAS  Google Scholar 

  6. Takahashi K, Miyasato I, Nishimura S, Ohyama J (2018) ChemCatChem 10:3223–3228

    Article  CAS  Google Scholar 

  7. Boyd PG, Lee Y, Smit B (2017) Nat Rev Mater 2:17037

    Article  CAS  Google Scholar 

  8. Katou T, Vitry D, Ueda W (2003) Chem Lett 32:1028–1029

    Article  CAS  Google Scholar 

  9. Sadakane M, Watanabe N, Katou T, Nodasaka Y, Ueda W (2007) Angew Chem Int Ed 46:1493–1496

    Article  CAS  Google Scholar 

  10. Zhang Z, Sadakane M, Murayama T, Izumi S, Yasuda N, Sakaguchi N, Ueda W (2014) Inorg Chem 53:903–911

    Article  CAS  Google Scholar 

  11. Zhang Z, Murayama T, Sadakane M, Ariga H, Yasuda N, Sakaguchi N, Asakura K, Ueda W (2015) Nat Commun 6:7731

    Article  Google Scholar 

  12. Zhang Z, Zhu Q, Sadakane M, Murayama T, Hiyoshi T, Yamamoto A, Hata S, Yoshida H, Ishikawa S, Hara M, Ueda W (2018) Nat Commun 9:3789

    Article  Google Scholar 

  13. Pyrz WD, Blom DA, Sadakane M, Kodato K, Ueda W, Vogt T, Buttrey DJ (2010) Chem Mater 22:2033–2040

    Article  CAS  Google Scholar 

  14. Pyrz WD, Blom DA, Sadakane M, Kodato K, Ueda W, Vogt T, Buttrey DJ (2010) Proc Natl Acad Sci USA 107:6152–6157

    Article  CAS  Google Scholar 

  15. Lunkenbein T, Girgsdies F, Wernbacher A, Noack J, Auffermann G, Yasuhara A, Hoffmann AK, Ueda W, Eichelbaum M, Trunschke A, Schlӧgel R, Willinger MG (2015) Angew Chem Int Ed 54:6828–6831

    Article  CAS  Google Scholar 

  16. Zhang Z, Sadakane M, Murayama T, Sakaguchi N, Ueda W (2014) Inorg Chem 53:7309–7318

    Article  CAS  Google Scholar 

  17. Zhang Z, Sadakane M, Noro S, Murayama T, Kamachi T, Yoshizawa K, Ueda W (2015) J Mater Chem A 3:746–755

    Article  CAS  Google Scholar 

  18. Zhang Z, Sadakane M, Hiyoshi N, Yoshida A, Hara M, Ueda W (2016) Angew Chem Int Ed 55:10234–10238

    Article  CAS  Google Scholar 

  19. Zhang Z, Sadakane M, Hara M, Ueda W (2017) Chem Eur J 23:17497–17503

    Article  CAS  Google Scholar 

  20. Zhu Q, Zhang Z, Sadakane M, Yoshida A, Hara M, Ueda W (2017) New J Chem 41:4503–4509

    Article  CAS  Google Scholar 

  21. Zhang Z, Sadakane M, Noro S, Hiyoshi N, Yoshida A, Hara M, Ueda W (2017) Chem Eur J 23:1972–1980

    Article  CAS  Google Scholar 

  22. Sadakane M, Rndo K, Kodato K, Ishikawa S, Murayama T, Ueda TW (2013) Eur J Inorg Chem 10–11:1731–1736

  23. Ishikawa S, Zhang Z, Ueda W (2018) ACS Catal 8:2935–2943

    Article  CAS  Google Scholar 

  24. Konya T, Katou T, Murayama T, Ishikawa S, Sadakane M, Buttrey DJ, Ueda W (2013) Catal Sci Technol 3:380–387

    Article  CAS  Google Scholar 

  25. Ishikawa S, Murayama T, Kumaki M, Tashiro M, Zhang Z, Yoshida A, Ueda W (2016) Top Catal 59:1477–1488

    Article  CAS  Google Scholar 

  26. Ishikawa S, Tashiro M, Murayama T, Ueda W (2014) Cryst Growth Des 14:4553–4561

    Article  CAS  Google Scholar 

  27. Ishikawa S, Kobayashi D, Konya T, Ohmura S, Murayama T, Yasuda N, Sadakane M, Ueda W (2015) J Phys Chem C 119:7195–7206

    Article  CAS  Google Scholar 

  28. Sadakane M, Kodato K, Kuranishi T, Nodasaka Y, Sugawara K, Sakaguchi N, Nagai T, Matsui Y, Ueda W (2008) Angew Chem Int Ed 47:2493–2496

    Article  CAS  Google Scholar 

  29. Li JR, Kuppler RJ, Zhou HC (2009) Chem Soc Rev 38:1477–1504

    Article  CAS  Google Scholar 

  30. Müller A, Krickemeyer E, Bögge H, Schmidtmann M, Peters F (1998) Angew Chem Int Ed 37:3359–3363

    Article  Google Scholar 

  31. Botar B, Kögerler P, Hill CL (2005) Chem Commn 3138–3140

  32. Müller A, Peters F, Pope MT, Gatteschi D (1998) Chem Rev 98:239–271

    Article  Google Scholar 

  33. Müller A, Botar B, Bögge H, Kögerler P, Berkle A (2002) Chem Commn 0:2944–2945

    Article  Google Scholar 

  34. Ishikawa S, Ueda W (2016) Catal Sci Technol 6:617–629

    Article  CAS  Google Scholar 

  35. Müller A, Beugholt C, Kögerler P, Bögge H, Budko S, Luban M (2000) Inorg Chem 39:5176–5177

    Article  Google Scholar 

  36. Rasmussen M, Näther C, Leusen JJ, Warzok U, Schalley CA, Kögerler P, Bensch W (2016) Dalton Trans 45:10519–10522

    Article  CAS  Google Scholar 

  37. Ishikawa S, Yi X, Murayama T, Ueda W (2014) Appl Catal A 474:10–17

    Article  CAS  Google Scholar 

  38. Ishikawa S, Yi X, Murayama T, Ueda W (2014) Catal Today 238:35–40

    Article  CAS  Google Scholar 

  39. Zhang Z, Ishikawa S, Tsuboi Y, Sadakane M, Murayama T, Ueda W (2016) Faraday Discuss 188:81–98

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Ueda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, S., Zhang, Z., Murayama, T. et al. Multi-dimensional Crystal Structuring of Complex Metal Oxide Catalysts of Group V and VI Elements by Unit-Assembling. Top Catal 62, 1157–1168 (2019). https://doi.org/10.1007/s11244-018-1077-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1077-0

Keywords

Navigation