Skip to main content
Log in

Correlation between Precursor Properties and Performance in the Oxygen Reduction Reaction of Pt and Co “Core-shell” Carbon Nitride-Based Electrocatalysts

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

This report shows the synthesis of a new family of “core-shell” carbon nitride (CN)-based electrocatalysts (ECs) for the oxygen reduction reaction (ORR) in acid medium. The ECs comprise “cores” of carbon black nanoparticles (NPs) that are covered by a CN “shell” embedding the active sites. The latter include Pt as the active metal” and Co as the “co-catalyst.” The interplay between the synthesis parameters, the chemical composition, and the ORR performance of the final ECs is elucidated. In particular, the ORR performance and reaction mechanism are studied both in an: (i) “ex-situ” setup, by means of cyclic voltammetry with thin-film rotating ring-disk electrode (CV-TF-RRDE) measurements; and (ii) “in-situ” experiment, i.e., in single proton exchange membrane fuel cells (PEMFCs) tested under operating conditions. A structural hypothesis is proposed that explains both the “ex situ” and the “in situ” ORR results on the basis of: (i) the relative amounts of the reactants used in the precursor synthesis; and (ii) the main temperature of the pyrolysis process (Tf) adopted in the preparation of the ECs. It is shown that the understanding of the fundamental features of the physicochemical processes involved in the preparation of the ECs is crucial in order to improve the proposed synthesis route and to yield ORR ECs exhibiting a performance level beyond the state of the art.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem. Int. Ed. 53(1), 102–121 (2014)

    CAS  Google Scholar 

  2. F. Cheng, J. Chen, Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41(6), 2172–2192 (2012)

    CAS  PubMed  Google Scholar 

  3. M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016)

    CAS  PubMed  Google Scholar 

  4. B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011)

    CAS  PubMed  Google Scholar 

  5. Energy infrastructure priorities for 2020 and beyond—a blueprint for an integrated European energy network, European Commission, Brussels. (2010)

  6. Energy 2020—a strategy for competitive, sustainable and secure energy, COM(2010) 639, European Commission, Brussels. (2010)

  7. N. Quental, D. Buttle, S. Abrar, K. Firkaviciuté, J. Jimenez Mingo, D. Sofianopoulos, A. Kontoudakis, C. Sales Agut, The Strategic Energy Technology (SET) Plan (Publications Office of the European Union, Luxembourg, 2017)

    Google Scholar 

  8. R. O'Hayre, S.W. Cha, W. Colella, F.B. Printz, Fuel Cell Fundamentals (Wiley, Hoboken, 2006)

    Google Scholar 

  9. S. Rodosik, J.P. Poirot-Crouvezier, Y. Bultel, Impact of humidification by cathode exhaust gases recirculation on a PEMFC system for automotive applications. Int. J. Hydrog. Energy 44, 12802–12817 (2018)

    Google Scholar 

  10. V. Vielstich, in Handbook of Fuel Cells—Fundamentals, Technology and Applications, ed. by V. Vielstich, A. Lamm, H. A. Gasteiger. Ideal and effective efficiencies of cell reactions and comparison to Carnot cycles (Wiley, Chichester, 2003), pp. 26–30

    Google Scholar 

  11. G. Hinds, E. Brightman, Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates. Int. J. Hydrog. Energy 40, 2785–2791 (2015)

    CAS  Google Scholar 

  12. Z.F. Li, L. Xin, F. Yang, Y. Liu, H. Zhang, L. Stanciu, J. Xie, Hierarchical polybenzimidazole-grafted graphene hybrids as supports for Pt nanoparticle catalysts with excellent PEMFC performance. Nano Energy 16, 281–292 (2015)

    CAS  Google Scholar 

  13. Z.Q. Tian, S.H. Lim, C.K. Poh, Z. Tang, Z. Xia, Z. Luo, P.K. Shen, D. Chua, Y.P. Feng, Z. Shen, J. Lin, A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells. Adv. Energy Mater. 1, 1205–1214 (2011)

    CAS  Google Scholar 

  14. 3.4 Fuel cells. (2016), https://energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf. Accessed 20 December 2017

  15. M. Kiani, J. Zhang, Y. Luo, C. Jiang, J. Fan, G. Wang, J. Chen, R. Wang, Recent developments in electrocatalysts and future prospects for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Energy Chem. 27, 1124–1139 (2018)

    Google Scholar 

  16. M. Zhou, H.L. Wang, S. Guo, Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 45(5), 1273–1307 (2016)

    CAS  PubMed  Google Scholar 

  17. C.R. Raj, A. Samanta, S.H. Noh, S. Mondal, T. Okajima, T. Ohsaka, Emerging new generation electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 4, 11156–11178 (2016)

    CAS  Google Scholar 

  18. N. Todoroki, R. Sasakawa, K. Kusunoki, T. Wadayama, Oxygen reduction reaction activity of nano-flake carbon-deposited Pt75Ni25(111) surfaces. Electrocatalysis 10, 232–242 (2019)

    CAS  Google Scholar 

  19. D. Liu, L. Tao, D. Yan, Y. Zou, S. Wang, Recent advances on non-precious metal porous carbon-based electrocatalysts for oxygen reduction reaction. ChemElectroChem 5, 1775–1785 (2018)

    CAS  Google Scholar 

  20. T. Sun, B. Tian, J. Lu, C. Su, Recent advances in Fe (or Co)/N/C electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Mater. Chem. A 5, 18933–18950 (2017)

    CAS  Google Scholar 

  21. U. Martinez, S. Komini Babu, E.F. Holby, P. Zelenay, Durability challenges and perspective in the development of PGM-free electrocatalysts for the oxygen reduction reaction. Curr. Opin. Electrochem. 9, 224–232 (2018)

    CAS  Google Scholar 

  22. S. Huang, A. Shan, R. Wang, Low Pt Alloyed Nanostructures for Fuel Cells Catalysts. Catalysts 8 (2018)

    Google Scholar 

  23. J. Park, L. Zhang, S.I. Choi, L.T. Roling, N. Lu, J.A. Herron, S. Xie, J. Wang, M.J. Kim, M. Mavrikakis, Y. Xia, Atomic layer-by-layer deposition of platinum on palladium octahedra for enhanced catalysts toward the oxygen reduction reaction. ACS Nano 9(3), 2635–2647 (2015)

    CAS  PubMed  Google Scholar 

  24. N.K. Chaudhari, J. Joo, B. Kim, B. Ruqia, S.I. Choi, K. Lee, Recent advances in electrocatalysts toward the oxygen reduction reaction: The case of PtNi octahedra. Nanoscale 10(43), 20073–20088 (2018)

    CAS  PubMed  Google Scholar 

  25. J. Qian, M. Shen, S. Zhou, C.-T. Lee, M. Zhao, Z. Lyu, Z.D. Hood, M. Vara, K.D. Gilroy, K. Wang, Y. Xia, Synthesis of Pt nanocrystals with different shapes using the same protocol to optimize their catalytic activity toward oxygen reduction. Mater. Today 21, 834–844 (2018)

    CAS  Google Scholar 

  26. V. Di Noto, E. Negro, K. Vezzù, F. Bertasi, G. Nawn, Origins, developments and perspectives of carbon nitride-based electrocatalysts for application in low-temperature FCs. Electrochem. Soc. Interf., Summer 2015, 59–64 (2015)

    Google Scholar 

  27. V. Di Noto, E. Negro, Core-Shell Mono/Plurimetallic Carbon Nitride Based Electrocatalysts for Low-Temperature Fuel Cells (PEMFCs, DMFCs, AFCs and Electrolysers). 2009

  28. V. Di Noto, A novel polymer electrolyte based on oligo(ethylene glycol) 600, K2PdCl4, and K3Fe(CN)6. J. Mater. Res. 12, 3393–3403 (1997)

    Google Scholar 

  29. V. Di Noto, E. Negro, R. Gliubizzi, S. Gross, C. Maccato, G. Pace, Pt and Ni carbon nitride electrocatalysts for the oxygen reduction reaction. J. Electrochem. Soc. 154, B745–B756 (2007)

    Google Scholar 

  30. E. Negro, K. Vezzù, F. Bertasi, P. Schiavuta, L. Toniolo, S. Polizzi, V. Di Noto, Interplay between nitrogen concentration, structure, morphology, and electrochemical performance of PdCoNi “Core-Shell” carbon nitride electrocatalysts for the oxygen reduction reaction. ChemElectroChem 1, 1359–1369 (2014)

    CAS  Google Scholar 

  31. E. Negro, A. Nale, K. Vezzù, G. Pagot, S. Polizzi, R. Bertoncello, A. Ansaldo, M. Prato, F. Bonaccorso, I.A. Rutkowska, P.J. Kulesza, V. Di Noto, Hierarchical oxygen reduction reaction electrocatalysts based on FeSn0.5 species embedded in carbon nitride-graphene based supports. Electrochim. Acta 280, 149–162 (2018)

    CAS  Google Scholar 

  32. K. Vezzù, A. Bach Delpeuch, E. Negro, S. Polizzi, G. Nawn, F. Bertasi, G. Pagot, K. Artyushkova, P. Atanassov, V. Di Noto, Fe-carbon nitride “Core-shell” electrocatalysts for the oxygen reduction reaction. Electrochim. Acta 222, 1778–1791 (2016)

    Google Scholar 

  33. V. Di Noto, E. Negro, S. Polizzi, F. Agresti, G.A. Giffin, Synthesis-structure-morphology interplay of bimetallic “core- shell” carbon nitride nano-electrocatalysts. ChemSusChem 5(12), 2451–2459 (2012)

    PubMed  Google Scholar 

  34. E. Negro, S. Polizzi, K. Vezzù, L. Toniolo, G. Cavinato, V. Di Noto, Interplay between morphology and electrochemical performance of “core-shell” electrocatalysts for oxygen reduction reaction based on a PtNix carbon nitride “shell” and a pyrolyzed polyketone nanoball “core”. Int. J. Hydrog. Energy 39, 2828–2841 (2014)

    CAS  Google Scholar 

  35. V. Di Noto, E. Negro, R. Gliubizzi, S. Lavina, G. Pace, S. Gross, C. Maccato, A Pt-Fe carbon nitride nano-electrocatalyst for polymer electrolyte membrane fuel cells and direct-methanol fuel cells: synthesis, characterization and electrochemical studies. Adv. Funct. Mater. 17, 3626–3638 (2007)

    Google Scholar 

  36. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56, 9–35 (2005)

    CAS  Google Scholar 

  37. V. Di Noto, E. Negro, Pt–Fe and Pt–Ni carbon nitride-based ‘Core–Shell’ ORR electrocatalysts for polymer electrolyte membrane fuel cells. Fuel Cells 10, 234–244 (2010)

    Google Scholar 

  38. F. Basolo, R.G. Pearson, Mechanisms of Inorganic Reactions, 2nd edn. (Wiley, Chichester, 1967)

    Google Scholar 

  39. V. Di Noto, E. Negro, S. Polizzi, K. Vezzù, L. Toniolo, G. Cavinato, Synthesis, studies and fuel cell performance of “core-shell” electrocatalysts for oxygen reduction reaction based on a PtNix carbon nitride “shell” and a pyrolyzed polyketone nanoball "core". Int. J. Hydrog. Energy 39, 2812–2827 (2014)

    Google Scholar 

  40. V. Di Noto, M. Vittadello, S.G. Greenbaum, S. Suarez, K. Kano, T. Furukawa, A new class of lithium hybrid gel electrolyte systems. J. Phys. Chem. B 108, 18832–18844 (2004)

    Google Scholar 

  41. V. Di Noto, Zeolitic inorganic−organic polymer electrolyte based on oligo(ethylene glycol) 600 K2PdCl4 and K3Co(CN)6. J. Phys. Chem. B 104, 10116–10125 (2000)

    Google Scholar 

  42. Y. Lu, Y. Jiang, H. Wu, W. Chen, Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping-cleaning. J. Phys. Chem. C 117, 2926–2938 (2013)

    CAS  Google Scholar 

  43. V. Di Noto, E. Negro, S. Polizzi, P. Riello, P. Atanassov, Preparation, characterization and single-cell performance of a new class of Pd-carbon nitride electrocatalysts for oxygen reduction reaction in PEMFCs. Appl. Catal. B Environ. 111-112, 185–199 (2012)

    Google Scholar 

  44. S. Guo, S. Zhang, S. Sun, Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52(33), 8526–8544 (2013)

    CAS  Google Scholar 

  45. L. Dubau, T. Asset, R. Chattot, C. Bonnaud, V. Vanpeene, J. Nelayah, F. Maillard, Tuning the performance and the stability of porous hollow PtNi/C nanostructures for the oxygen reduction reaction. ACS Catal. 5, 5333–5341 (2015)

    CAS  Google Scholar 

  46. M.D. Obradović, A.V. Tripković, S.L. Gojković, Oxidation of carbon monoxide and formic acid on bulk and nanosized Pt–Co alloys. J. Solid State Electrochem. 16, 587–595 (2012)

    Google Scholar 

  47. M.J. Molaei, A. Ataie, S. Raygan, S.J. Picken, The effect of different carbon reducing agents in synthesizing barium ferrite/magnetite nanocomposites. Mater. Chem. Phys. 219, 155–161 (2018)

    CAS  Google Scholar 

  48. U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm, Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 495, 134–145 (2001)

    CAS  Google Scholar 

  49. M. Gattrell, B. MacDougall, in Handbook of Fuel Cells—Fundamentals, Technology and Applications, ed. by V. Vielstich, A. Lamm, H. A. Gasteiger. Reaction mechanisms of the O2 reduction/evolution reaction (Wiley, Chichester, 2003), pp. 443–464

    Google Scholar 

  50. A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, L. Giorgi, Comparison of high surface Pt/C catalysts by cyclic voltammetry. J. Power Sources 105, 13–19 (2002)

    CAS  Google Scholar 

  51. H. Yang, C. Coutanceau, J.-M. Léger, N. Alonso-Vante, ClaudeLamy, Methanol tolerant oxygen reduction on carbon-supported Pt–Ni alloy nanoparticles. J. Electroanal. Chem. 576, 305–313 (2005)

    CAS  Google Scholar 

  52. J.X. Wang, F.A. Uribe, T.E. Springer, J. Zhang, R.R. Adzic, Intrinsic kinetic equation for oxygen reduction reaction in acidic media: the double Tafel slope and fuel cell applications. Faraday Discuss. 140, 347–362 (2008)

    CAS  PubMed  Google Scholar 

  53. D.B. Sepa, M.V. Vojnovic, L.M. Vracar, A. Damjanovic, Different views regarding the kinetics and mechanisms of oxygen reduction at Pt and Pd electrodes. Electrochim. Acta 32, 129–134 (1987)

    CAS  Google Scholar 

  54. B. Hammer, Y. Morikawa, J.K. Nørskov, CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 76(12), 2141–2144 (1996)

    CAS  PubMed  Google Scholar 

  55. T.J. Schmidt, H.A. Gasteiger, in Handbook of Fuel Cells—Fundamentals, Technology and Applications, ed. by V. Vielstich, A. Lamm, H. A. Gasteiger. Rotating thin-film method for supported catalysts (Wiley, Chichester, 2003), pp. 316–333

    Google Scholar 

  56. S.S. Kocha, in Handbook of Fuel Cells—Fundamentals, Technology and Applications, ed. by V. Vielstich, A. Lamm, H. A. Gasteiger. Principles of MEA preparation (Wiley, Chichester, 2003), pp. 538–565

    Google Scholar 

  57. S. Kaytakoğlu, L. Akyalçın, Optimization of parametric performance of a PEMFC. Int. J. Hydrog. Energy 32, 4418–4423 (2007)

    Google Scholar 

  58. S. Shen, X. Cheng, C. Wang, X. Yan, C. Ke, J. Yin, J. Zhang, Exploration of significant influences of the operating conditions on the local O2 transport in proton exchange membrane fuel cells (PEMFCs). Phys. Chem. Chem. Phys. 19(38), 26221–26229 (2017)

    CAS  PubMed  Google Scholar 

  59. F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry (Wiley, New York, 1999)

    Google Scholar 

  60. P.J. Kulesza, J.K. Zak, I.A. Rutkowska, B. Dembinska, S. Zoladek, K. Miecznikowski, E. Negro, V. Di Noto, P. Zelenay, Elucidation of role of graphene in catalytic designs for electroreduction of oxygen. Cur. Opin. Electrochem. 9, 257–264 (2018)

    CAS  Google Scholar 

  61. J. Zak, E. Negro, I.A. Rutkowska, B. Dembinska, V. Di Noto, P.J. Kulesza, in Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, ed. by K. Wadelt. Graphene-based nanostructures in electrocatalytic oxygen reduction (Elsevier, Amsterdam, 2018), pp. 651–659

    Google Scholar 

Download references

Acknowledgements

This project has received funding from: (a) the European Union’s Horizon 2020 research and innovation program under grant agreement Graphene Core 2 785219; (b) the program “Budget Integrato per la Ricerca Interdipartimentale - BIRD 2018” of the University of Padova (protocol BIRD187913); and (c) the project “Hierarchical electrocatalysts with a low platinum loading for low-temperature fuel cells – HELPER” funded by the University of Padova. Partial support from the National Science Center (NCN, Poland) under Opus Project 2018/29/B/ST5/02627 is also appreciated by PJK and IAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Di Noto.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 495 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Noto, V., Negro, E., Nale, A. et al. Correlation between Precursor Properties and Performance in the Oxygen Reduction Reaction of Pt and Co “Core-shell” Carbon Nitride-Based Electrocatalysts. Electrocatalysis 11, 143–159 (2020). https://doi.org/10.1007/s12678-019-00569-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00569-8

Keywords

Navigation