Skip to main content

Advertisement

Log in

Heterogeneous Electro-Fenton Process by MWCNT-Ce/WO3 Nanocomposite Modified GF Cathode for Catalytic Degradation of BTEX: Process Optimization Using Response Surface Methodology

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

This study investigates the degradation and mineralization of BTEX by heterogeneous electro-Fenton process using GO/MWCNT/Fe3O4 as a catalyst and MWCNT-Ce/WO3/GF as an electrode. The nanoscale MWCNT-Ce/WO3 composite catalyst was distributed more evenly on GF surface to form a catalyst layer with higher oxygen reduction reaction performance. After optimization of pH and time variables, the Box–Behnken experimental design (BBD) and response surface methodology (RSM) were used to design and optimize the performance of proposed system and energy consumption. Analysis of variance (ANOVA) revealed that the quadratic model was adequately fitted to the experimental data with R2 (0.98) and adj-R2 (0.97). The significance levels of linear and interaction effects of the reaction parameters on process efficiency were obtained. Then, the optimization of the working conditions for the design of a sustainable treatment system with optimum efficiency was carried out using a response surface methodology. The experiment carried out in the calculated optimal conditions for the electro-Fenton degradation process (current intensity 300 mA, catalyst dosage of 0.6 g, initial BTEX concentration of 100 ppm, and electrode distance of 1 cm) showed a BTEX removal of 73.2% and energy consumption of 12.3 (kWh/m3) close to the theoretical value predicted by the model 73. 2% and 11.8 (kWh/m3), respectively. Furthermore, the reusability test of GO/MWCNT/Fe3O4 nanocomposite after several cycles confirmed the high catalytic activities of adsorbent. Comparing the proposed system with conventional GF electrode and Fe2+ catalyst showed that modification of cathode and catalyst led to increasing COD removal efficiency by around 36.6 and 31.6%, respectively. The findings of present study revealed that the proposed heterogeneous electro-Fenton process can be utilized as pre-treatment technology to improve the biodegradability and reduce the organic load of wastewater by combine oxidation and coagulation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. Olvera-Vargas, X. Zheng, O. Garcia-Rodriguez, O. Lefebvre, Sequential “electrochemical peroxidation – Electro-Fenton” process for anaerobic sludge treatment. Water Res. 154, 277–286 (2019)

    CAS  PubMed  Google Scholar 

  2. P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 299, 1–15 (2012)

    CAS  Google Scholar 

  3. J.C.G. Sousa, A.R. Ribeiro, M.O. Barbosa, M.F.R. Pereira, A.M.T. Silva, A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 344, 146–162 (2018)

    CAS  PubMed  Google Scholar 

  4. V. Poza-Nogueiras, M. Arellano, E. Rosales, M. Pazos, E. González-Romero, M.A. Sanromán, Heterogeneous electro-Fenton as plausible technology for the degradation of imidazolinium-based ionic liquids. Chemosphere 199, 68–75 (2018)

    CAS  PubMed  Google Scholar 

  5. J.C. Murillo-Sierra, E. Ruiz-Ruiz, L. Hinojosa-Reyes, J.L. Guzmán-Mar, F. Machuca-Martínez, A. Hernández-Ramírez, Sulfamethoxazole mineralization by solar photo electro-Fenton process in a pilot plant. Catal. Today 313, 175–181 (2018)

    CAS  Google Scholar 

  6. R. Dewil, D. Mantzavinos, I. Poulios, M.A. Rodrigo, New perspectives for advanced oxidation processes. J. Environ. Manag. 195(Pt 2), 93–99 (2017)

    CAS  Google Scholar 

  7. C. Trellu, E. Mousset, Y. Pechaud, D. Huguenot, E.D. van Hullebusch, G. Esposito, M.A. Oturan, Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review. J. Hazard. Mater. 306, 149–174 (2016)

    CAS  PubMed  Google Scholar 

  8. S. Xavier, R. Gandhimathi, P.V. Nidheesh, S.T. Ramesh, Comparison of homogeneous and heterogeneous Fenton processes for the removal of reactive dye Magenta MB from aqueous solution. Desalin. Water Treat. 53(1), 109–118 (2015)

    CAS  Google Scholar 

  9. Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473-474, 619–641 (2014)

    CAS  PubMed  Google Scholar 

  10. I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ. Sci. Pollut. Res. 21(14), 8336–8367 (2014)

    Google Scholar 

  11. N. Klidi, F. Proietto, F. Vicari, A. Galia, S. Ammar, A. Gadri, O. Scialdone, Electrochemical treatment of paper mill wastewater by electro-Fenton process. J. Electroanal. Chem. 841, 166–171 (2019)

    CAS  Google Scholar 

  12. J. Meijide, M. Pazos, M.Á. Sanromán, Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation. Environ. Sci. Pollut. Res. 26(4), 3145–3156 (2019)

    CAS  Google Scholar 

  13. O. Ganzenko, C. Trellu, S. Papirio, N. Oturan, D. Huguenot, E.D. van Hullebusch, G. Esposito, M.A. Oturan, Bioelectro-Fenton: evaluation of a combined biological—advanced oxidation treatment for pharmaceutical wastewater. Environ. Sci. Pollut. Res. 25(21), 20283–20292 (2018)

    CAS  Google Scholar 

  14. Y. Xiao, J.M. Hill, Mechanistic insights for the electro-Fenton regeneration of carbon materials saturated with methyl orange: dominance of electrodesorption. J. Hazard. Mater. 367, 59–67 (2019)

    CAS  PubMed  Google Scholar 

  15. X. Huang, B. Feng, Y.N. Zhao, W. Hu, Fenton-reaction-derived Fe/N-doped graphene with encapsulated Fe3C nanoparticles for efficient photo-Fenton catalysis. Catal. Lett. 148(8), 2528–2536 (2018)

    CAS  Google Scholar 

  16. I. Ouiriemmi, A. Karrab, N. Oturan, M. Pazos, E. Rozales, A. Gadri, M.Á. Sanromán, S. Ammar, M.A. Oturan, Heterogeneous electro-Fenton using natural pyrite as solid catalyst for oxidative degradation of vanillic acid. J. Electroanal. Chem. 797, 69–77 (2017)

    CAS  Google Scholar 

  17. T.J. Al-Musawi, H. Kamani, E. Bazrafshan, A.H. Panahi, M.F. Silva, G. Abi, Optimization the effects of physicochemical parameters on the degradation of cephalexin in Sono-Fenton reactor by using Box-Behnken response surface methodology. Catal. Lett. 149(5), 1186–1196 (2019)

    CAS  Google Scholar 

  18. Y. Chen, H. Chen, J. Li, L. Xiao, Rapid and efficient activated sludge treatment by electro-Fenton oxidation. Water Res. 152, 181–190 (2019)

    CAS  PubMed  Google Scholar 

  19. Nidheesh, P.V., H. Olvera-Vargas, N. Oturan, and M.A. Oturan, Heterogeneous electro-Fenton process: principles and applications, in Handbook of Environmental Chemistry. 2018, Springer Verlag. p. 85–110

  20. Z. Es'haghzade, E. Pajootan, H. Bahrami, M. Arami, Facile synthesis of Fe3O4 nanoparticles via aqueous based electro chemical route for heterogeneous electro-Fenton removal of azo dyes. J. Taiwan Inst. Chem. Eng. 71, 91–105 (2017)

    CAS  Google Scholar 

  21. A.G. Akerdi, Z. Es'Haghzade, S.H. Bahrami, M. Arami, Comparative study of GO and reduced GO coated graphite electrodes for decolorization of acidic and basic dyes from aqueous solutions through heterogeneous electro-Fenton process. Journal of Environmental Chemical Engineering 5(3), 2313–2324 (2017)

    CAS  Google Scholar 

  22. H. Dong, H. Su, Z. Chen, H. Yu, H. Yu, Fabrication of electrochemically reduced graphene oxide modified gas diffusion electrode for in-situ electrochemical advanced oxidation process under mild conditions. Electrochim. Acta 222, 1501–1509 (2016)

    CAS  Google Scholar 

  23. G. Gao, Q. Zhang, Z. Hao, C.D. Vecitis, Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton. Environ. Sci. Technol. 49(4), 2375–2383 (2015)

    CAS  PubMed  Google Scholar 

  24. Y. Liu, X. Quan, X. Fan, H. Wang, S. Chen, High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angewandte Chemie - International Edition 54(23), 6837–6841 (2015)

    CAS  PubMed  Google Scholar 

  25. Y. Wang, Y. Liu, K. Wang, S. Song, P. Tsiakaras, H. Liu, Preparation and characterization of a novel KOH activated graphite felt cathode for the electro-Fenton process. Appl. Catal. B Environ. 165, 360–368 (2015)

    CAS  Google Scholar 

  26. Y. Gong, J. Li, Y. Zhang, M. Zhang, X. Tian, A. Wang, Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode. J. Hazard. Mater. 304, 320–328 (2016)

    CAS  PubMed  Google Scholar 

  27. Y. Wang, Y. Liu, X.Z. Li, F. Zeng, H. Liu, A highly-ordered porous carbon material based cathode for energy-efficient electro-Fenton process. Sep. Purif. Technol. 106, 32–37 (2013)

    CAS  Google Scholar 

  28. C. Flox, S. Ammar, C. Arias, E. Brillas, A.V. Vargas-Zavala, R. Abdelhedi, Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Appl. Catal. B Environ. 67(1–2), 93–104 (2006)

    CAS  Google Scholar 

  29. T.X.H. Le, M. Bechelany, S. Lacour, N. Oturan, M.A. Oturan, M. Cretin, High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode. Carbon 94, 1003–1011 (2015)

    CAS  Google Scholar 

  30. H. Kaneko, K. Nozaki, Y. Wada, T. Aoki, A. Negishi, M. Kamimoto, Vanadium redox reactions and carbon electrodes for vanadium redox flow battery. Electrochim. Acta 36(7), 1191–1196 (1991)

    CAS  Google Scholar 

  31. W.H. Wang, X.D. Wang, Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery. Electrochim. Acta 52(24), 6755–6762 (2007)

    CAS  Google Scholar 

  32. M. Bartolozzi, Development of redox flow batteries. A historical bibliography. J. Power Sources 27(3), 219–234 (1989)

    CAS  Google Scholar 

  33. Y. Shen, H. Xu, P. Xu, X. Wu, Y. Dong, L. Lu, Electrochemical catalytic activity of tungsten trioxide-modified graphite felt toward VO2+/VO2+ redox reaction. Electrochim. Acta 132, 37–41 (2014)

    CAS  Google Scholar 

  34. P.M. Kadam, N.L. Tarwal, S.S. Mali, H.P. Deshmukh, P.S. Patil, Enhanced electrochromic performance of f-MWCNT-WO 3 composite. Electrochim. Acta 58(1), 556–561 (2011)

    CAS  Google Scholar 

  35. M.H. Chakrabarti, E.P.L. Roberts, C. Bae, M. Saleem, Ruthenium based redox flow battery for solar energy storage. Energy Convers. Manag. 52(7), 2501–2508 (2011)

    CAS  Google Scholar 

  36. S. Chandrabose Raghu, M. Ulaganathan, T.M. Lim, M. Skyllas Kazacos, Electrochemical behaviour of titanium/iridium(IV) oxide: tantalum pentoxide and graphite for application in vanadium redox flow battery. J. Power Sources 238, 103–108 (2013)

    CAS  Google Scholar 

  37. H. Zhou, Y. Shen, J. Xi, X. Qiu, L. Chen, ZrO2-nanoparticle-modified graphite felt: bifunctional effects on vanadium flow batteries. ACS Appl. Mater. Interfaces 8(24), 15369–15378 (2016)

    CAS  PubMed  Google Scholar 

  38. C. Yao, H. Zhang, T. Liu, X. Li, Z. Liu, Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery. J. Power Sources 218, 455–461 (2012)

    CAS  Google Scholar 

  39. Y. Miseki, H. Kusama, H. Sugihara, K. Sayama, Cs-modified WO3 photocatalyst showing efficient solar energy conversion for O2 production and Fe (III) ion reduction under visible light. J. Phys. Chem. Lett. 1(8), 1196–1200 (2010)

    CAS  Google Scholar 

  40. G.R. Bamwenda, T. Uesigi, Y. Abe, K. Sayama, H. Arakawa, Photocatalytic oxidation of water to O2 over pure CeO2, WO3, and TiO2 using Fe3+ and Ce4+ as electron acceptors. Appl. Catal. A Gen. 205(1–2), 117–128 (2001)

    CAS  Google Scholar 

  41. J. Friedl, C.M. Bauer, A. Rinaldi, U. Stimming, Electron transfer kinetics of the VO2+/VO2+—reaction on multi-walled carbon nanotubes. Carbon 63, 228–239 (2013)

    CAS  Google Scholar 

  42. H.Q. Zhu, Y.M. Zhang, L. Yue, W.S. Li, G.L. Li, D. Shu, H.Y. Chen, Graphite-carbon nanotube composite electrodes for all vanadium redox flow battery. J. Power Sources 184(2), 637–640 (2008)

    CAS  Google Scholar 

  43. E. Alfaya, O. Iglesias, M. Pazos, M.A. Sanromán, Environmental application of an industrial waste as catalyst for the electro-Fenton-like treatment of organic pollutants. RSC Adv. 5(19), 14416–14424 (2015)

    CAS  Google Scholar 

  44. S. Liu, Y. Gu, S.L. Wang, Y. Zhang, Y.F. Fang, D.M. Johnson, Y.P. Huang, Degradation of organic pollutants by a Co3O4-graphite composite electrode in an electro-Fenton-like system. Chin. Sci. Bull. 58(19), 2340–2346 (2013)

    CAS  Google Scholar 

  45. A. Babuponnusami, K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering 2(1), 557–572 (2014)

    CAS  Google Scholar 

  46. W. He, X. Yan, H. Ma, J. Yu, J. Wang, X. Huang, Degradation of methyl orange by electro-Fenton-like process in the presence of chloride ion. Desalin. Water Treat. 51(34–36), 6562–6571 (2013)

    CAS  Google Scholar 

  47. N. Oturan, M. Zhou, M.A. Oturan, Metomyl degradation by electro-Fenton and electro-Fenton-like processes: a kinetics study of the effect of the nature and concentration of some transition metal ions as catalyst. J. Phys. Chem. A 114(39), 10605–10611 (2010)

    CAS  PubMed  Google Scholar 

  48. P.V. Nidheesh, R. Gandhimathi, Comparative removal of rhodamine B from aqueous solution by electro-Fenton and electro-Fenton-like processes. Clean - Soil, Air, Water 42(6), 779–784 (2014)

    CAS  Google Scholar 

  49. B. Balci, M.A. Oturan, N. Oturan, I. Sires, Decontamination of aqueous glyphosate, (aminomethyl) phosphonic acid, and glufosinate solutions by electro-Fenton-like process with Mn2+ as the catalyst. J. Agric. Food Chem. 57(11), 4888–4894 (2009)

    CAS  PubMed  Google Scholar 

  50. C. Wang, Y. Hua, Y. Tong, A novel electro-Fenton-like system using PW11O 39Fe(III)(H2O)4- as an electrocatalyst for wastewater treatment. Electrochim. Acta 55(22), 6755–6760 (2010)

    CAS  Google Scholar 

  51. Z.W. Cheng, S. Peng-fei, Y.F. Jiang, J.M. Yu, J.M. Chen, Ozone-assisted UV254nm photodegradation of gaseous ethylbenzene and chlorobenzene: effects of process parameters, degradation pathways, and kinetic analysis. Chem. Eng. J. 228, 1003–1010 (2013)

    CAS  Google Scholar 

  52. S. Gligorovski, R. Strekowski, S. Barbati, D. Vione, Environmental implications of hydroxyl radicals (•OH). Chem. Rev. 115(24), 13051–13092 (2015)

    CAS  PubMed  Google Scholar 

  53. Dixon, W.T. and R.O.C. Norman, Electron spin resonance studies of oxidation. Part IV. Some benzenoid compounds. Journal of the Chemical Society (Resumed), 1964: p. 4850–4856

  54. E.T. Denisov, D.I. Metelitsa, Oxidation of benzene. Russ. Chem. Rev. 37, 1547–1566 (1968)

    CAS  Google Scholar 

  55. G.R. Peyton, The free-radical chemistry of persulfate-based total organic carbon analyzers. Mar. Chem. 41(1–3), 91–103 (1993)

    CAS  Google Scholar 

  56. R.A. Kenley, J.E. Davenport, D.G. Hendry, Gas-phase hydroxyl radical reactions. Products and pathways for the reaction of OH with aromatic hydrocarbons. J. Phys. Chem. 85(19), 2740–2746 (1981)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrollah Majidian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, M., Majidian, N. & Samipourgiri, M. Heterogeneous Electro-Fenton Process by MWCNT-Ce/WO3 Nanocomposite Modified GF Cathode for Catalytic Degradation of BTEX: Process Optimization Using Response Surface Methodology. Electrocatalysis 10, 628–642 (2019). https://doi.org/10.1007/s12678-019-00550-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00550-5

Keywords

Navigation