Skip to main content

Advertisement

Log in

Characterization of Amorphous Ni-Nb-Y Nanoparticles for the Hydrogen Evolution Reaction Produced Through Surfactant-Assisted Ball Milling

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Amorphous Ni79.2Nb12.5Y8.3 and Ni81.3Nb6.3Y12.5 nanoparticles were synthesized using cryogenic mechanical alloying followed by surfactant-assisted high energy ball milling (SA-HEBM). These alloys were tested towards the hydrogen evolution reaction (HER) along with pure crystalline Ni and Ni5Y nanoparticles also produced through SA-HEBM. This two-stage ball milling process provided a novel processing route for the production of nanostructured/amorphous materials with a wide range of possible compositions not achievable through rapid solidification, electrodeposition, or chemical reduction techniques. The investigation of different surfactant and solvent concentrations resulted in improved nanoparticle yields whereby average particle sizes between 41 and 89 nm were obtained for crystalline and amorphous materials. Electrochemical testing showed that Ni81.3Nb6.3Y12.5 exhibited the lowest Tafel values and the fastest HER kinetics on both an electrochemically active surface area and on a mass loading basis. This investigation demonstrates their potential for use in anion exchange membrane water electrolysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.K. Cho, H.-Y. Park, S. Choe, S.J. Yoo, J.Y. Kim, H.-J. Kim, D. Henkensmeier, S.Y. Lee, Y.-E. Sung, H.S. Park, J.H. Jang, Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis. J. Power Sources 347, 283–290 (2017)

    CAS  Google Scholar 

  2. H. Ito, N. Miyazaki, S. Sugiyama, M. Ishida, Y. Nakamura, S. Iwasaki, Y. Hasegawa, A. Nakano, Investigations on electrode configurations for anion exchange membrane electrolysis. J. Appl. Electrochem. 48(3), 305–316 (2018)

    CAS  Google Scholar 

  3. Y. Leng, G. Chen, A.J. Mendoza, T.B. Tighe, M.A. Hickner, C.Y. Wang, Solid-state water electrolysis with an alkaline membrane. J. Am. Chem. Soc. 134(22), 9054–9057 (2012)

    CAS  Google Scholar 

  4. J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M.A. Hickner, P.A. Kohl, A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, T. Xu, L. Zhuang, Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7(10), 3135–3191 (2014)

    CAS  Google Scholar 

  5. I. Vincent, D. Bessarabov, Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew. Sust. Energ. Rev. 81, 1690–1704 (2018)

    CAS  Google Scholar 

  6. M.A. Hickner, A.M. Herring, E.B. Coughlin, Anion exchange membranes: current status and moving forward. J. Polym. Sci. Part B Polym. Phys. 51(24), 1727–1735 (2013)

    CAS  Google Scholar 

  7. I. Roger, M.A. Shipman, M.D. Symes, Nat. Rev. Chem. 1, 1 (2017)

    Google Scholar 

  8. V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Nat. Mater. 16, 57 (2016)

    Google Scholar 

  9. S. Ghobrial, D.W. Kirk, S.J. Thorpe, Amorphous Ni-Nb-Y alloys as hydrogen evolution electrocatalysts. Electrocatalysis 10(3), 243–252 (2019)

    CAS  Google Scholar 

  10. K.M. Cole, D.W. Kirk, S.J. Thorpe, In situ Raman study of amorphous and crystalline Ni-Co alloys for the alkaline oxygen evolution reaction. J. Electrochem. Soc. 165(15), J3122–J3129 (2018)

    CAS  Google Scholar 

  11. Y. Qiu, L. Xin, W. Li, Electrocatalytic oxygen evolution over supported small amorphous Ni–Fe nanoparticles in alkaline electrolyte. Langmuir 30(26), 7893–7901 (2014)

    CAS  Google Scholar 

  12. Y. Liang, X. Sun, A.M. Asiri, Y. He, Nanotechnology 27 (2016)

    Article  Google Scholar 

  13. R.D.L. Smith, M.S. Prévot, R.D. Fagan, S. Trudel, C.P. Berlinguette, Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135(31), 11580–11586 (2013)

    CAS  Google Scholar 

  14. K. Lian, S.J. Thorpe, D.W. Kirk, The electrocatalytic activity of amorphous and crystalline Ni-Co alloys on the oxygen evolution reaction. Electrochim. Acta 37(1), 169–175 (1992)

    CAS  Google Scholar 

  15. J.F. Loffler, Bulk metallic glasses. Intermetallics 11(6), 529–540 (2003)

    CAS  Google Scholar 

  16. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48(1), 279–306 (2000)

    CAS  Google Scholar 

  17. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46(1-2), 1–184 (2001)

    CAS  Google Scholar 

  18. M.H. Enayati, F.A. Mohamed, Application of mechanical alloying/milling for synthesis of nanocrystalline and amorphous materials. Int. Mater. Rev. 59(7), 394–416 (2014)

    CAS  Google Scholar 

  19. S. Ghobrial, D.W. Kirk, S.J. Thorpe, Solid state amorphization in the Ni-Nb-Y system by mechanical alloying. J. Non-Cryst. Solids 502, 1–8 (2018)

    CAS  Google Scholar 

  20. V.M. Chakka, B. Altuncevahir, Z.Q. Jin, Y. Li, J.P. Liu, J. Appl. Phys. 991, 8 (2006)

    Google Scholar 

  21. Y. Wang, Y. Li, C. Rong, J.P. Liu, Nanotechnology 18, 18 (2007)

    Google Scholar 

  22. L. Zheng, B. Cui, L. Zhao, W. Li, G.C. Hadjipanayis, Sm2Co17 nanoparticles synthesized by surfactant-assisted high energy ball milling. J. Alloys Compd. 539, 69–73 (2012)

    CAS  Google Scholar 

  23. P. Saravanan, R. Gopalan, R. Rao, M. Raja, V. Chandrasekaran, SmCo5/Fe nanocomposite magnetic powders processed by magnetic field-assisted ball milling with and without surfactant. J. Phys. D Appl. 40(17), 5021–5026 (2007)

    CAS  Google Scholar 

  24. N.G. Akdogan, W. Li, G.C. Hadjipanayis, Anisotropic Nd2Fe14B nanoparticles and nanoflakes by surfactant-assisted ball milling (2011), pp. 107–110

    Google Scholar 

  25. D. Li, C. Wang, D. Tripkovic, S. Sun, N.M. Markovic, V.R. Stamenkovic, Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance. ACS Catal. 2(7), 1358–1362 (2012)

    CAS  Google Scholar 

  26. Z. Niu, Y. Li, Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 26(1), 72–83 (2014)

    CAS  Google Scholar 

  27. C.A. Crouse, E. Michel, Y. Shen, S.J. Knutson, B.K. Hardenstein, J.E. Spowart, S.O. Leontsev, S.L. Semiatin, J. Horwath, Z. Turgut, M.S. Lucas, J. Appl. Phys. 111, 07A724 (2012)

    Google Scholar 

  28. S.O. Leontsev, M.S. Lucas, Y. Shen, A. Sheets, J. Horwath, E. Karapetrova, C. Crouse, Surfactant removal study for nano-scale ${\text SmCo}_{5}$ powder prepared by high energy ball milling. IEEE Trans. Magn. 49(7), 3341–3344 (2013)

    CAS  Google Scholar 

  29. L. Zheng, A.M. Gabay, W. Li, B. Cui, G.C. Hadjipanayis, J. Appl. Phys. 109, 2009 (2011)

    Google Scholar 

  30. Z. Wang, F. Choi, E. Acosta, Effect of surfactants on zero-valent iron nanoparticles (NZVI) reactivity. J. Surfactant Deterg. 20(3), 577–588 (2017)

    CAS  Google Scholar 

  31. M. Eaqub Ali, M. Ullah, S. Bee Abd Hamid, Rev. Adv. Mater. Sci. 37, 1 (2014)

    Google Scholar 

  32. S.M. Alia, B.S. Pivovar, Evaluating hydrogen evolution and oxidation in alkaline media to establish baselines. J. Electrochem. Soc. 165(7), F441–F455 (2018)

    CAS  Google Scholar 

  33. C.C.L. Mccrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137(13), 4347–4357 (2015)

    CAS  Google Scholar 

  34. M.J. Rosen, J.T. Kunjappu, Surfactants and Interfacial Phenomena: Fourth Edition, Fourth Edi (John Wiley & Sons, Hoboken, 2012)

    Google Scholar 

  35. B.Z. Cui, A.M. Gabay, W.F. Li, M. Marinescu, J.F. Liu, G.C. Hadjipanayis, J. Appl. Phys. 107, 721 (2010)

    Google Scholar 

  36. N.G. Akdogan, G.C. Hadjipanayis, D.J. Sellmyer, J. Appl. Phys. 105, 5 (2009)

    Google Scholar 

  37. K. Simeonidis, C. Sarafidis, E. Papastergiadis, M. Angelakeris, I. Tsiaoussis, O. Kalogirou, Evolution of Nd2Fe14B nanoparticles magnetism during surfactant-assisted ball-milling. Intermetallics 19(4), 589–595 (2011)

    CAS  Google Scholar 

  38. S. Kar, S. Logad, O.P. Choudhary, C. Debnath, S. Verma, K.S. Bartwal, Univers. J. Mater. Sci. 1, 18 (2013)

    Google Scholar 

  39. Z. Wang, S. Xu, E. Acosta, Heat of adsorption of surfactants and its role on nanoparticle stabilization. J. Chem. Thermodyn. 91, 256–266 (2015)

    CAS  Google Scholar 

  40. Y. Sahoo, H. Pizem, T. Fried, D. Golodnitsky, L. Burstein, C.N. Sukenik, G. Markovich, Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 17(25), 7907–7911 (2001)

    CAS  Google Scholar 

  41. P.A. Van Aken, B. Liebscher, Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L 23 electron energy-loss near-edge spectra. Phys. Chem. Miner. 29(3), 188–200 (2002)

    Google Scholar 

  42. M. Hao, S. Garbarino, S. Prabhudev, T. Borsboom-Hanson, G.A. Botton, D.A. Harrington, D. Guay, Vertically aligned Ni nanowires as a platform for kinetically limited water-splitting electrocatalysis. J. Phys. Chem. C 123(2), 1082–1093 (2019)

    CAS  Google Scholar 

  43. W. Liu, M. Yue, B. Cui, G.C. Hadjipanayis, Permanent magnetic nanoparticles and nanoflakes prepared by surfactant-assisted high-energy ball milling. Rev. Nanosci. Nanotechnol. 3(4), 259–275 (2014)

    CAS  Google Scholar 

  44. W.F. Li, H. Sepehri-Amin, L.Y. Zheng, B.Z. Cui, A.M. Gabay, K. Hono, W.J. Huang, C. Ni, G.C. Hadjipanayis, Effect of ball-milling surfactants on the interface chemistry in hot-compacted SmCo5 magnets. Acta Mater. 60(19), 6685–6691 (2012)

    CAS  Google Scholar 

  45. M. Grdeń, M. Alsabet, G. Jerkiewicz, Surface science and electrochemical analysis of nickel foams. ACS Appl. Mater. Interfaces 4(6), 3012–3021 (2012)

    Google Scholar 

  46. J. Van Drunen, B. Kinkead, M.C.P. Wang, E. Sourty, B.D. Gates, G. Jerkiewicz, Comprehensive structural, surface-chemical and electrochemical characterization of nickel-based metallic foams. ACS Appl. Mater. Interfaces 5(14), 6712–6722 (2013)

    Google Scholar 

  47. G.H. Meier, F.S. Pettit, The oxidation behavior of intermetallic compounds. Mater. Sci. Eng. A 153(1-2), 548–560 (1992)

    Google Scholar 

  48. T. Kitamura, C. Iwakura, H. Tamura, Chem. Lett. 5, 965 (1981)

    Google Scholar 

  49. F. Rosalbino, G. Borzone, E. Angelini, R. Raggio, Hydrogen evolution reaction on Ni RE (RE=rare earth) crystalline alloys. Electrochim. Acta 48(25-26), 3939–3944 (2003)

    CAS  Google Scholar 

  50. F. Rosalbino, S. Delsante, G. Borzone, E. Angelini, Effect of rare earth metals addition on the corrosion behaviour of crystalline Co–Ni alloys in alkaline solution. J. Electroanal. Chem. 622(2), 161–164 (2008)

    CAS  Google Scholar 

  51. B.E. Conway, B.V. Tilak, Electrochim. Acta 47, 3571 (2002)

    CAS  Google Scholar 

  52. L. Peraldo Bicelli, C. Romagnani, M. Rosania, Hydrogen evolution reaction on cobalt. J. Electroanal. Chem. 63(2), 238–244 (1975)

    CAS  Google Scholar 

  53. M.A.V. Devanathan, M. Selvaratnam, Mechanism of the hydrogen-evolution reaction on nickel in alkaline solutions by the determination of the degree of coverage. Trans. Faraday Soc. 56, 1820 (1960)

    CAS  Google Scholar 

  54. J.O.M. Bockris, S. Srinivasan, Elucidation of the mechanism of electrolytic hydrogen evolution by the use of H-T separation factors. Electrochim. Acta 9(1), 31–44 (1964)

    CAS  Google Scholar 

  55. J.O.M. Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, Modern Electrochemistry 2A. Fundementals of Electrodics (Kluwer Academic Publishers, New York, 2002)

    Google Scholar 

  56. M.M. Jakšić, Electrocatalysis of hydrogen evolution in the light of the brewer—engel theory for bonding in metals and intermetallic phases. Electrochim. Acta 29(11), 1539–1550 (1984)

    Google Scholar 

  57. I.A. Raj, K.I. Vasu, Transition metal-based hydrogen electrodes in alkaline solution ? electrocatalysis on nickel based binary alloy coatings. J. Appl. Electrochem. 20(1), 32–38 (1990)

    CAS  Google Scholar 

  58. C. Fan, D.L. Piron, A. Sleb, P. Paradis, Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis. J. Electrochem. Soc. 141(2), 382 (1994)

    CAS  Google Scholar 

  59. J.M. Jaksic, M.V. Vojnovic, N.V. Krstajic, Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes. Electrochim. Acta 45(25-26), 4151–4158 (2000)

    CAS  Google Scholar 

  60. S. Baranton, C. Coutanceau, Appl. Catal. B Environ. 136–137, 1 (2013)

    Google Scholar 

  61. M. Gong, D.Y. Wang, C.C. Chen, B.J. Hwang, H. Dai, A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 9(1), 28–46 (2016)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Surface Engineering and Electrochemistry (SEE) Research Group, Dept. of Materials Science and Engineering, University of Toronto. The TEM research described in this paper was performed at the Canadian Centre for Electron Microscopy at McMaster University, which is supported by NSERC and other government agencies. The authors gratefully acknowledge the assistance of Prof. E. J. Acosta in the Dept. of Chemical Engineering and Applied Chemistry at the University of Toronto for useful discussions on surfactant milling.

Funding

The authors gratefully acknowledge the financial support from the Natural Science and Engineering Research Council of Canada (NSERC Discovery Frontiers Grant) through the Engineered Nickel Catalysts for Electrochemical Clean Energy project administered from Queen’s University and supported by Grant No. RGPNM 477963-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Cole.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghobrial, S., Cole, K.M., Kirk, D.W. et al. Characterization of Amorphous Ni-Nb-Y Nanoparticles for the Hydrogen Evolution Reaction Produced Through Surfactant-Assisted Ball Milling. Electrocatalysis 10, 680–689 (2019). https://doi.org/10.1007/s12678-019-00556-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00556-z

Keywords

Navigation