Skip to main content
Log in

Ruthenium(II) complexes containing a pendant methanol amidogen induce apoptosis in SGC-7901 cells through a ROS-mediated mitochondrial dysfunction pathway

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A phenanthrene derivative with a pendant methanol amidogen TFCPIP and its two ruthenium(II) complexes [Ru(phen)2(TFCPIP)](ClO4)2 (1) and [Ru(dmp)2(TFCPIP)](ClO4)2 (2) (phen = 1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, TFCPIP = 2-(2,3,5,6-tetrafluoro-4-aminoethanolphenyl)[4,5-f]-imidazo[1,10]phenanthroline) were synthesized, and the anticancer properties of the two complexes were examined. Both the complexes displayed certain anticancer activities against the selected SGC-7901, BEL-7402, HeLa, A549, MG-63, HepG2, PC-12 and SiHa cancer cells, with the highest cytotoxic activities against SGC-7901. The cell biology experiments for exploring toxicity mechanism with fluorescence imaging technique and flow cytometry demonstrated that the complexes can trigger apoptosis of SGC-7901 cells with an increase in ROS level, a decrease in mitochondrial membrane potential, and effectively inhibit cell invasion and cell growth at G2/M phase, implicating that the complexes induce cellular apoptosis through a ROS-mediated mitochondrial dysfunction pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jacques F, Isabelle S, Rajesh D, Sultan E, Colin M, Marise R, Donald MP, David F, Freddie B (2015) Int J Cancer 136:E359–E386

    Article  Google Scholar 

  2. Umar N, Ndumiso M, Mahmoud ES (2017) Drug Des Dev Ther 11:599–616

    Article  Google Scholar 

  3. Sarkar A (2018) Pharm Pat Anal 7:33–46

    Article  CAS  Google Scholar 

  4. Lazarević T, Rilak A, Bugarčić ŽD (2017) Eur J Med Chem 142:8–31

    Article  Google Scholar 

  5. Shahana D, Ganna VK (2016) Cancer Chemother Pharmacol 6:1103–1124

    Google Scholar 

  6. Franz H, Johannes K, Gilles G (2017) Acc Chem Res 50:2727–2736

    Article  Google Scholar 

  7. Bergamo A, Sava G (2007) Dalton Trans 13:1267–1272

    Article  Google Scholar 

  8. Anna N, Gilles G (2017) Chem Soc Rev 46:7317–7337

    Article  Google Scholar 

  9. Fergus EP, Sandra AB, Salvador B, Williams DC, John MK, Thorfinnur G (2017) Chem Soc Rev 46:7706–7756

    Article  Google Scholar 

  10. Kalaivani P, Prabhakaran R, Poornima P, Huang R, Hornebecq V, Dallemer F, Padma VV, Natarajan K (2013) RSC Adv 3:20363–20378

    Article  CAS  Google Scholar 

  11. Devi CS, Nagababu P, Natarajan S, Deepika N, Reddy PV, Veerababu N, Singh SS, Satyanarayana S (2014) Eur J Med Chem 72:160–169

    Article  Google Scholar 

  12. Zhu JW, Liu SH, Zhang GQ, Xu HH, Wang YX, Wu Y, Liu YM, Wang Y, Liang JB, Guo QF (2016) J Membr Biol 4:483–492

    Article  Google Scholar 

  13. Bing T, Dan W, Shang-Hai L, Hui-Hui Y, Cheng Z, Xiu-Zhen W, Chuan-Chuan Z, Yun-Jun L (2017) J Inorg Biochem 173:93–104

    Article  Google Scholar 

  14. Isabella R, Facchetti G, Lucchini G, Castiglioni E, Marchianò S, Ferri N (2017) Bioorgan Med Chem 25:1907–1913

    Article  Google Scholar 

  15. Liang ZH, Liu HY, Jiang GB, Wen JY, Liu YJ, Xiao XY (2016) Chin J Chem 34:997–1005

    Article  CAS  Google Scholar 

  16. Ravi KV, Kamakshi D, Praveen KY, Vinoda RM, Rajender RM, Nagamani C, Ravi C, Suman ST, Ch. Mohan R, Satyanarayana S (2018) New J Chem 42:846–859

    Article  Google Scholar 

  17. Nowak-Sliwinska P, Clavel CM, Pǎunescu E, Winkel MT, Griffioen AW, Dyson PJ (2015) Mol Pharm 12:3089–3096

    Article  CAS  Google Scholar 

  18. Sullivan BP, Salmon DJ, Meyer TJ (1978) Inorg Chem 17:3334–3341

    Article  CAS  Google Scholar 

  19. Collin JP, Sauvage JP (1986) Inorg Chem 25:135–141

    Article  CAS  Google Scholar 

  20. Mosmann T (1983) J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  21. Lo KK, Lee TK, Lau JS, Poon WL, Cheng SH (2008) Inorg Chem 47:200–208

    Article  CAS  Google Scholar 

  22. Zhang XX, Fu ZY, Zhang ZY, Miao C, Xu PF, Wang T, Yang LY, Cheng SP (2012) Environ Sci Technol 46:11319–11326

    Article  CAS  Google Scholar 

  23. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  24. Zhang C, Lai SH, Zeng CC, Tang B, Wan D, Xing DG, Liu YJ (2016) J Biol Inorg Chem 21:1047–1060

    Article  CAS  Google Scholar 

  25. Zeng L, Chen Y, Liu J, Huang H, Guan R, Ji L, Chao H (2016) Sci Rep 6:19449

    Article  CAS  Google Scholar 

  26. Chen TF, Wong YS (2008) Cell Mol Life Sci 65:2763–2775

    Article  CAS  Google Scholar 

  27. Chen TF, Wong YS (2009) Int J Biochem Cell Biol 41:666–676

    Article  CAS  Google Scholar 

  28. Martin A, Byrne A, Burke CS, Forster RJ, Keyes TE (2014) J Am Chem Soc 136:15300–15309

    Article  CAS  Google Scholar 

  29. Luo Z, Yu L, Yang F, Zhao Z, Yu B, Lai H, Wong KH, Ngai SM, Zheng W, Chen T (2014) Metallomics 6:1480–1490

    Article  CAS  Google Scholar 

  30. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DWA (1997) J Biol Chem 272:17907–17911

    Article  CAS  Google Scholar 

  31. Martinou JC, Youle RJ (2011) Dev Cell 21:92–101

    Article  CAS  Google Scholar 

  32. Shi Y (2002) Mol Cell 9(3):459–470

    Article  CAS  Google Scholar 

  33. Thornberry NA, Lazebnik Y (1998) Science 281:1312–1316

    Article  CAS  Google Scholar 

  34. Matthew B, Luis RM, Rebeka LDG, Enrique C, Lawrence HB (2013) BMC Cell Biol 14(32):1–9

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science foundation of Guangdong Province (Nos2014A030307015), Special Cultivation Funds for Guangdong College Students’ Scientific and Technological Innovation, Entrepreneurship Training Project and Shaoguan university.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Lan Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, XL., Xu, J., Jiang, RH. et al. Ruthenium(II) complexes containing a pendant methanol amidogen induce apoptosis in SGC-7901 cells through a ROS-mediated mitochondrial dysfunction pathway. Transit Met Chem 45, 129–138 (2020). https://doi.org/10.1007/s11243-019-00365-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00365-9

Navigation