Skip to main content
Log in

Ruthenium [NNN] and [NCN]-type pincer complexes with phosphine coligands: synthesis, structures and catalytic applications

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A series of ruthenium [NNN]- or [NCN]-type complexes (37) bearing PPh3 ancillary ligands have been synthesized from pyridine- or phenylene-bridged bis(triazoles) 1 and 2. In the case of [NNN]-pincer complex 3, an unusual and unexpected cis-orientation adopted by two sterically demanding PPh3 ligands was observed, and such configuration proved to be unchanged in solution for a long time. By contrast and as expected, the two phosphines are found to be trans to each other in the case of [NCN]-type pincer complex 4, but an oxidation of RuII center to RuIII occurred. Complex cis-3 underwent ligand exchanges leading to the formations of diphosphine derivatives 5 and 6. As a representative, cis-3 was treated with the base in isopropanol affording a mixture of Ru–hydrido complexes with various phosphine binding modes, one of which (trans-7) bearing two trans-standing phosphines has been successfully isolated and fully characterized. The catalytic performances of all newly synthesized Ru complexes have been examined and compared in transfer hydrogenations of ketones and enones, in which mono-phosphine complexes proved to be significantly superior to their diphosphine counterparts. The catalytic process proved to involve Ru–H key intermediates, but the trans-oriented Ru–H species is unlikely to be the main catalytic contributor. In particular, the best performer cis-3 exhibits high chemoselectivity in certain cases catalyzing α,β-unsaturated ketones, whose behavior is quite different compared to most precedents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For a related review, see [1].

  2. For selected reviews, see [2,3,4,5,6].

  3. For recent papers focusing on the Ru–btp complexes and their photoluminescence applications, see [7,8,9].

  4. For selected reviews on Ru pincer complexes, see [10,11,12,13].

  5. For selected examples, see [14,15,16,17,18,19,20].

  6. For selected examples, see [20,21,22,23,24,25,26,27].

  7. To the best of our knowledge, there is only one report regarding Ru NNN pincer complexes bearing two cis-standing mono-phosphines. For this paper, see Ref. [15].

  8. For the report in which the term “transphobia effect” was coined, see [32].

  9. For a review, see [33].

  10. For selected reviews on TH reactions, see [39,40,41,42,43].

  11. For a review on Ru-mediated THs of enones, see [44,45,46,47,48].

References

  1. Byrne JP, Kitchen JA, Gunnlaugsson T (2014) Chem Soc Rev 43:5302

    CAS  PubMed  Google Scholar 

  2. Haldón E, Nicasio MC, Pérez PJ (2015) Org Biomol Chem 13:9528

    PubMed  Google Scholar 

  3. Liang L, Astruc D (2011) Coord Chem Rev 255:2933

    CAS  Google Scholar 

  4. Hein JE, Fokin VV (2010) Chem Soc Rev 39:1302

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Meldal M, Tornøe CW (2008) Chem Rev 108:2952

    CAS  PubMed  Google Scholar 

  6. Kolb HC, Finn MG, Sharpless KB (2004) Angew Chem Int Ed 2001:40

    Google Scholar 

  7. Schulze B, Friebe C, Hager MD, Winter A, Hoogenboom R, Görls H, Schubert US (2009) Dalton Trans 5:787

    Google Scholar 

  8. Yang W, Zhong Y (2013) Chin J Chem 31:329

    CAS  Google Scholar 

  9. Byrne JP, Kitchen JA, Kotova O, Leigh V, Bell AP, Boland JJ, Albrecht M, Gunnlaugsson T (2014) Dalton Trans 43:196

    CAS  PubMed  Google Scholar 

  10. Gunanathan C, Milstein D (2014) Chem Rev 114:12024

    CAS  PubMed  Google Scholar 

  11. Younus HA, Su W, Ahmad N, Chen S, Verpoort F (2015) Adv Synth Catal 357:283

    CAS  Google Scholar 

  12. Younus HA, Ahmad N, Su W, Verpoort F (2014) Coord Chem Rev 276:112

    CAS  Google Scholar 

  13. Freeman GR, Williams JAG (2013) Top Organomet Chem 40:89

    CAS  Google Scholar 

  14. Deng H, Yu Z, Dong J, Wu S (2005) Organometallics 24:4110

    CAS  Google Scholar 

  15. Wang L, Liu T (2018) Chin J Catal 39:327

    CAS  Google Scholar 

  16. Wang Q, Chai H, Yu Z (2017) Organometallics 36:3638

    CAS  Google Scholar 

  17. Chai H, Liu T, Yu Z (2017) Organometallics 36:4136

    CAS  Google Scholar 

  18. Chai H, Wang Q, Liu T, Yu Z (2016) Dalton Trans 45:17843

    CAS  PubMed  Google Scholar 

  19. Wang Q, Wu K, Yu Z (2016) Organometallics 35:1251

    CAS  Google Scholar 

  20. Chai H, Liu T, Wang Q, Yu Z (2015) Organometallics 34:5278

    CAS  Google Scholar 

  21. Menéndez-Pedregal E, Vaquero M, Lastra E, Gamasa P, Pizzano A (2015) Chem Eur J 21:549

    PubMed  Google Scholar 

  22. Li K, Niu J-L, Yang M-Z, Li Z, Wu L-Y, Hao X-Q, Song M-P (2015) Organometallics 34:1170

    CAS  Google Scholar 

  23. Paul B, Chakrabarti K, Kundu S (2016) Dalton Trans 45:11162

    CAS  PubMed  Google Scholar 

  24. Shi J, Hu B, Chen X, Shang S, Deng D, Sun Y, Shi W, Yang X, Chen D (2017) ACS Omega 2:3406

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Toda T, Saitoh K, Yoshinari A, Ikariya T, Kuwata S (2017) Organometallics 36:1188

    CAS  Google Scholar 

  26. Melle P, Manoharan Y, Albrecht M (2018) Inorg Chem 57:11761

    CAS  PubMed  Google Scholar 

  27. Shi J, Hu B, Gong D, Shang S, Hou G, Chen D (2016) Dalton Trans 45:4828

    CAS  PubMed  Google Scholar 

  28. Karthikeyan T, Sankararaman S (2009) Tetrahedron Lett 50:5834

    CAS  Google Scholar 

  29. Fabbrizzi P, Cicchi S, Brandi A, Sperotto E, van Koten G (2009) Eur J Org Chem 31:5423

    Google Scholar 

  30. Crowley JD, Bandeen PH, Hanton LR (2010) Polyhedron 29:70

    CAS  Google Scholar 

  31. Wang H, Zhang B, Yan X, Guo S (2018) Dalton Trans 47:528

    CAS  PubMed  Google Scholar 

  32. Vicente J, Arcas A, Bautista D, Jones PG (1997) Organometallics 16:2127

    CAS  Google Scholar 

  33. Clapham SE, Hadzovic A, Morris RH (2004) Coord Chem Rev 248:2201

    CAS  Google Scholar 

  34. Bampos N, Field LD, Messerle BA (1993) Organometallics 12:2529

    CAS  Google Scholar 

  35. Wang Q, Chai H, Yu Z (2018) Organometallics 37:584

    CAS  Google Scholar 

  36. Du W, Wu P, Wang Q, Yu Z (2013) Organometallics 32:3083

    CAS  Google Scholar 

  37. Du W, Wang L, Wu P, Yu Z (2012) Chem Eur J 18:11550

    CAS  PubMed  Google Scholar 

  38. Ye W, Zhao M, Du W, Jiang Q, Wu K, Wu P, Yu Z (2011) Chem Eur J 17:4737

    CAS  PubMed  Google Scholar 

  39. Wang D, Astruc D (2015) Chem Rev 115:6621

    CAS  PubMed  Google Scholar 

  40. Bartoszewicz A, Ahlsten N, Martín-Matute B (2013) Chem Eur J 19:7274

    CAS  PubMed  Google Scholar 

  41. Li Y-Y, Yu S-L, Shen W-Y, Gao J-X (2015) Acc Chem Res 48:2587

    CAS  PubMed  Google Scholar 

  42. Alonso F, Riente P, Yus M (2011) Acc Chem Res 44:379

    CAS  PubMed  Google Scholar 

  43. Morris RH (2009) Chem Soc Rev 38:2282

    CAS  PubMed  Google Scholar 

  44. Farrar-Tobar RA, Tin S, de Vries JG (2018) Organometallics for Green Catalysis. Topics Organomet Chem 63:193

    Google Scholar 

  45. Farrar-Tobar RA, Wei Z, Jiao H, Hinze S, de Vries JG (2018) Chem Eur J 24:2725

    CAS  PubMed  Google Scholar 

  46. Melle P, Albrecht M (2019) Chimia 73:299

    CAS  PubMed  Google Scholar 

  47. Horn S, Gandolfi C, Albrecht M (2011) Eur J Inorg Chem 18:2863

    Google Scholar 

  48. Liu T, Chai H, Wang L, Yu Z (2017) Organometallics 36:2914

    CAS  Google Scholar 

  49. Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) Organometallics 29:2176

    CAS  Google Scholar 

  50. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank “General Project of Scientific Research Program of Beijing Education Commission” (Grant No. KM201810028007), National Natural Science Foundation of China (Grant No. 21502122) and Beijing Natural Science Foundation (Grant No. 2192012) for financial support. The author Dr. Shuai Guo also highly appreciates the support from Yenching Young Scholar Cultivation Program of Capital Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Wang, H., Yan, X. et al. Ruthenium [NNN] and [NCN]-type pincer complexes with phosphine coligands: synthesis, structures and catalytic applications. Transit Met Chem 45, 99–110 (2020). https://doi.org/10.1007/s11243-019-00362-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00362-y

Navigation