Skip to main content
Log in

Cloning and expression analysis of the StCUL1 gene in potato

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The Cullin-RING E3 ubiquitin ligase (CRL) complex is the most common E3 ligase, and the SCF complex (CRL1) has the most diverse functions. Cullin1(CUL1) is a scaffolding protein for assembly of the complex. SCF has been shown to participate in the non-biological stress response pathways. In this study, a classic CUL1 protein was identified in Solanum tuberosum, StCUL1. A full-length cDNA of the StCUL1 gene was obtained from ED13 (a potato variety) by Ralstonia solanacearum inoculation using the RACE method. Sequence analysis indicated that the gene comprised 2662 bp, with an open reading frame of 2229 bp encoding 743 amino acids. The expression levels of the StCUL1 gene in potato treated with R. solanacearum and exogenous hormones (such as salicylic acid, jasmonic acid methyl ester and abscisic acid) at different time points were determined by real-time PCR. The results indicated that StCUL1 was induced not only by pathogenic bacteria, but also by exogenous hormones, with sustained high expression. However, there were some differences in the modes of expression. Tissue localization analysis indicated that its expression was tissue specific, and it was mainly in the phloem of the vascular system of stems and leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CRL:

Cullin-RING E3 ubiquitin ligase

UPS:

Ubiquitin–proteasome system

HECT:

Homology to E6-AP Carboxyl Terminus

cdc53:

Cell division control protein 53

RBX1:

Ring-box 1

SKP1:

Suppressor of kinetochore protein 1

SLY1:

S-phase kinase-associated protein 1

Max2:

MORE AXILLARY BRANCHES 2

References

  • An JP, Li R, Qu FJ et al (2016) Apple F-Box protein MdMAX2 regulates plant photomorphogenesis and stress response. Front Plant Sci 7:1685

    PubMed  PubMed Central  Google Scholar 

  • Bornstein G, Ganoth D, Hershko A (2006) Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate. Proc Natl Acad Sci USA 103(31):11515–11520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burg HAVD, Tsitsigiannis DI, Rowland O et al (2008) The F-Box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant Cell 20(3):697–719

    PubMed  PubMed Central  Google Scholar 

  • Cao Y, Yang Y, Zhang H et al (2008) Overexpression of a rice defense-related F-box protein gene OsDRF1 in tobacco improves disease resistance through potentiation of defense gene expression. Physiol Plant 134(3):440–452

    CAS  PubMed  Google Scholar 

  • Chen R, Guo W, Yin Y et al (2014) A novel F-box protein caf-box is involved in, responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.). Int J Mol Sci 15(2):2413–2430

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Chi Y, Meng Q et al (2018) GmSK1, a SKP1 homologue in soybean, is involved in the tolerance to salt and drought. Plant Physiol Biochem 127:25–31

    CAS  PubMed  Google Scholar 

  • Cheng C, Wang Z, Ren Z et al (2017) SCFatpp2-b11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana. PLoS Genet 13(8):e1006947

    PubMed  PubMed Central  Google Scholar 

  • Christians MJ, Rottier A, Wiersma C (2018) Light regulates the rubylation levels of individual cullin proteins in Arabidopsis thaliana. Plant Mol Biol Rep 36(1):1–12

    Google Scholar 

  • Do SI, Kim K, Lee H et al (2014) Aberrant expression pattern and location of cullin 1 are associated with the development of papillary carcinoma in thyroid and cyclin d1 expression. Endocr Pathol 25(3):282–287

    CAS  PubMed  Google Scholar 

  • Feng S, Ma L, Wang X et al (2003) The COP9 signalosome interacts physically with SCFCOI1 and modulates jasmonate responses. Plant Cell 15(5):1083–1094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Shen Y, Sullivan JA et al (2004) Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein degradation. Plant Cell 16(7):1870–1882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao G, Ren CH, Jin LP et al (2008) Cloning, expression and characterization of a nonspecific lipid transfer protein gene from potato. Acta Agron Sin 34(9):1510–1517

    CAS  Google Scholar 

  • Gilkerson J, Hu J, Brown J et al (2009) Isolation and characterization of CUL1-7, a recessive allele of cullin1 that disrupts SCF function at the C terminus of cul1 in Arabidopsis thaliana. Genetics 181(3):945–963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths J, Murase K, Rieu I et al (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18(12):3399–3414

    CAS  PubMed  PubMed Central  Google Scholar 

  • He LY (1983) Characteristics of strains of Pseudomonas solanacearum from China. Plant Dis 67(12):1357–1361

    Google Scholar 

  • He Y, Wang C, Higgins J et al (2016) Meiotic F-box is essential for male meiotic DNA double strand break repair in rice. Plant Cell 28(8):1879–1893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hellmann H, Hobbie L, Chapman A et al (2003) Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. EMBO J 22(13):3314–3325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hotton SK, Callis J (2008) Regulation of cullin-RING ligases. Annu Rev Plant Biol 59(1):467–489

    CAS  PubMed  Google Scholar 

  • Jain M, Kaur N, Tyagi AK et al (2006) The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genom 6(1):36–46

    CAS  Google Scholar 

  • Jia F, Wang C, Huang J et al (2015) SCF E3 ligase pp 2–b11 plays a positive role in response to salt stress in Arabidopsis. J Exp Bot 66(15):4683–4697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao L, Fu S, Zhang Y et al (2016) U-box E3 ubiquitin ligases regulate stress tolerance and growth of plants. Chin Bull Bot 57(6):1189–1209

    Google Scholar 

  • Katsir L, Chung HS, Koo AJ et al (2008) Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol 11(4):428–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Woo OG, Jang H et al (2018) Characterization and comparative expression analysis of CUL1 genes in rice. Genes Genom 40(3):1–9

    Google Scholar 

  • Kipreos ET, Lander LE, Wing JP et al (1996) CUL-1, is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell 85(6):829–839

    CAS  PubMed  Google Scholar 

  • Lee JH, Kim WT (2011) Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol Cells 31(3):201–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Jia F, Yu Y et al (2014) The SCF E3 ligase AtPP2-B11 plays a negative role in response to drought stress in Arabidopsis. Plant Mol Biol Rep 32(5):943–956

    Google Scholar 

  • Li Y, Zhang L, Li D et al (2016) The Arabidopsis F-box E3 ligase RIFP1 plays a negative role in abscisic acid signaling by facilitating ABA receptor RCAR3 degradation. Plant Cell Environ 39(3):571–582

    CAS  PubMed  Google Scholar 

  • Li Q, Wang W, Wang W, Zhang G et al (2018) Wheat F-box protein gene TaFBA1is involved in plant tolerance to heat stress. Front Plant Sci 9:521

    PubMed  PubMed Central  Google Scholar 

  • Magori S, Citovsky V (2011) Hijacking of the host SCF ubiquitin ligase machinery by plant pathogens. Front Plant Sci 2:87

    PubMed  PubMed Central  Google Scholar 

  • Maldonado-Calderón MT, Sepúlveda-García E, Rocha-Sosa M (2012) Characterization of novel F-box proteins in plants induced by biotic and abiotic stress. Plant Sci 185–186(4):208–217

    PubMed  Google Scholar 

  • Ni X, Tian Z, Liu J et al (2010) StPUB17, a novel potato UND/PUB/ARM repeat type gene, is associated with late blight resistance and NaCl stress. Plant Sci 178(2):158–169

    CAS  Google Scholar 

  • Pauwels L, Ritter A, Goossens J et al (2015) The RING E3 ligase KEEP ON GOING modulates JASMONATE ZIM-DOMAIN12 stability. Plant Physiol 169(2):1405–1417

    PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Leonreyes A, Van DES et al (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316

    CAS  PubMed  Google Scholar 

  • Piisilä M, Keceli MA, Brader G et al (2015) The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana. BMC Plant Biol 15(1):53

    PubMed  PubMed Central  Google Scholar 

  • Prakash C, Manjrekar J, Chattoo BB (2016) Skp1, a component of E3 ubiquitin ligase, is necessary for growth, sporulation, development and pathogenicity in rice blast fungus (Magnaporthe oryzae). Mol Plant Pathol 17(6):903–919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren C, Pan J, Peng W et al (2010) Point mutations in Arabidopsis cullin1 reveal its essential role in jasmonate response. Plant J 42(4):514–524

    Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2010) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49(1):317–343

    Google Scholar 

  • Sadanandom A, Bailey M, Ewan R et al (2012) The ubiquitin–proteasome system: central modifier of plant signalling. New Phytol 196(1):13–28

    CAS  PubMed  Google Scholar 

  • Salanoubat M, Genin S, Artiguenave F et al (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415(6871):497–502

    CAS  PubMed  Google Scholar 

  • Schwechheimer C, Willige BC (2009) Shedding light on gibberellic acid signalling. Curr Opin Plant Biol 12(1):57–62

    CAS  PubMed  Google Scholar 

  • Shen WH, Parmentier Y, Hellmann H et al (2002) Null mutation of atcul1 causes arrest in early embryogenesis in Arabidopsis. Mol Biol Cell 13(6):1916–1928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Dai X, Zhang WH (2012) A rice F-box gene, OsFBX352, is involved in glucose-delayed seed germination in rice. J Exp Bot 63(15):5559–5568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stratmann JW, Gusmaroli G (2012) Many jobs for one good cop the COP9 signalosome guards development and defense. Plant Sci 185–186(4):50–64

    PubMed  Google Scholar 

  • Tao T, Zhou CJ, Wang Q et al (2017) Rice black streaked dwarf virus P7-2 forms a SCF complex through binding to Oryza sativa SKP1-like proteins, and interacts with GID2 involved in the gibberellin pathway. PLoS ONE 12(5):e0177518

    PubMed  PubMed Central  Google Scholar 

  • Thomas S, Kenneth D, Livak J (2008) Analyzing real-time PCR data by comparative C(T) method. Nat Protoc 3(6):1101–1108

    Google Scholar 

  • Wang J, Yao W, Wang L et al (2017) Overexpression of VpEIFP1, a novel F-box/Kelch-repeat protein from wild Chinese Vitis pseudoreticulata, confers higher tolerance to powdery mildew by inducing thioredoxin z proteolysis. Plant Sci 263:142–155

    CAS  PubMed  Google Scholar 

  • Zanati OEL, Roche J, Boulaflous-Stevens A et al (2017) Genome-wide analysis, classification, expression and interaction of physcomitrella patens SKP1-like, (PpSKP) and F-box (FBX) genes. Plant Gene 12:13–22

    Google Scholar 

  • Zhang Y, Xu W, Li Z et al (2009) F-box protein dor functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiol 148(5):2121–2133

    Google Scholar 

  • Zhang Y, Wang C, Lin Q et al (2015) Genome-wide analysis of phylogeny, expression profile and sub-cellular localization of skp1-like genes in wild tomato. Plant Sci 238:105–114

    CAS  PubMed  Google Scholar 

  • Zheng N, Schulman BA, Song L et al (2002) Structure of the Cul1-Rbx1-skp1-Fboxskp2 SCF ubiquitin ligase complex. Nature 416:703–709

    CAS  PubMed  Google Scholar 

  • Zhou SM, Kong XZ, Kang HH et al (2015) The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants. PLoS ONE 10(4):e0122117

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the institutes of Vegetables and Flowers and Plant Protection of the Chinese Academy of Agricultural Sciences for potato materials. This work was supported by the project of National Natural Science Foundation of China (31771858).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Gao.

Ethics declarations

Conflict of interest

No conflict of interest was declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13562_2019_495_MOESM1_ESM.tif

Supplementary Figure 1 StCUL1 shares high structural similarity in different species. A Protein sequence alignment of StCUL1 showing the conserved domains. The amino acid sequence of StCUL1 was aligned with Solanum lycopersicum (XP_004229226.1), Capsicum annuum (XP_016542284.1), Nicotiana sylvestris (XP_009780619.1), and Petunia hybrida (BAW00386.1) homologs. The Cullin domain, consisting of 150 (418-567) amino acid residues and the cullin-nedd8 domain, consisting of 68 (669-736) amino acid residues, are represented by a solid line, which is conserved across many species. The comparison software was performed using DNAMAN6.0 software. Black indicates 100% conservatism, dark gray shading indicates 70% conservatism, and light gray shading indicates 50% conservatism. B A phylogenetic tree was generated from a multiple sequence alignment using Neighbour-Joining method with 1000 bootstrap replicates by MEGA 5 software. (TIFF 26184 kb)

13562_2019_495_MOESM2_ESM.tif

Supplementary Figure 2 Structure representation of StCUL1 protein predicted using the PSIPRED Web Server (http://bioinf.cs.ucl.ac.uk/psipred/). A Secondary structure showing alpha helix、extended strand、beta-turn and random coil. B Ribbon representation of the 3D structure of StCUL1 modified on SWISS Web Server (https://swissmodel.expasy.org/). (TIFF 5860 kb)

13562_2019_495_MOESM3_ESM.tif

Supplementary Figure 3 Cis-acting regulatory elements in the promoter regions of StCUL1. The 1572 bp upstream of the start codon was analyzed based on the PLACE, PlantCARE and potato genome sequence databases from GenBank (https://www.ncbi.nlm.nih.gov/). Different cis-elements showed by colored squares. (TIFF 6424 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, PX., Shi, L., Wang, XJ. et al. Cloning and expression analysis of the StCUL1 gene in potato. J. Plant Biochem. Biotechnol. 28, 460–469 (2019). https://doi.org/10.1007/s13562-019-00495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-019-00495-2

Keywords

Navigation