Skip to main content

Advertisement

Log in

Sneak peek of Hypericum perforatum L.: phytochemistry, phytochemical efficacy and biotechnological interventions

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The phytochemistry of Hypericum perforatum (St. John’s wort) has been elaborated extensively owing to its immense application in medicinal chemistry. Illustrated pharmacological activities like antidepressant, antiviral, and antibacterial effects demonstrated its substantiation for numerous of the conventional purposes reported for St John’s wort. St. John’s wort is herbal remedy extensively used in mild to moderate depression. Most of pharmacological activities were assigned to presence of photosensitive naphthodianthrone; hypericin and other allied flavonoid constituents. Escalating demands of hyperforin as antidepressant added more lure to H. perforatum L. The crude extracts of H. perforatum containing phloroglucinols were used for free radical scavenging and against DNA damage. To meet increasing demands of this drug, researchers need to tailor out the biosynthetic pathways to improve secondary metabolite. This necessitated advancement in biotechnological intervention to improve phytochemical potential of this growing herb. This review will brief out ecology, chemistry and phytochemical efficacy with respective phytoconstituents. Further, review will emphasize biotechnological interventions including both conventional and modern contrivances that have been implemented to augment the glory of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DMAPP:

Dimethylallyldiphosphate

GPP:

Geranyldiphosphate

PDT:

Photodynamic therapy

CHS:

Chalcone synthase

PAL:

Phenylalanine-ammonia

MAO:

Monoamine oxidase

References

  • Abdel-Salam OME (2005) Anti-inflammatory, antinociceptive, and gastric effects of Hypericum perforatum in rats. Sci World J 5:586–595

    Google Scholar 

  • Adam P, Arigoni D, Bacher A et al (2002) Biosynthesis of hyperforin in Hypericum perforatum. J Med Chem 45:4786–4793

    CAS  PubMed  Google Scholar 

  • Agostinis P, Berg K, Cengel KA et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281

    PubMed  PubMed Central  Google Scholar 

  • Alan AR, Susan JM, Praveen KS (2015) Evaluation of ploidy variations in Hypericum perforatum L. (St. John’s wort) germplasm from seeds, in vitro germplasm collection, and regenerants from floral cultures). In: Vitro cellular and developmental biology plant. https://doi.org/10.1007/s11627-015-9708-7

    CAS  Google Scholar 

  • Arndt S, Haag SF, Kleemann A (2013) Radical protection in the visible and infrared by a hyperforin-rich cream—in vivo versus ex vivo methods. Exp Dermatol 22:354–356

    CAS  PubMed  Google Scholar 

  • Austin MB, Noel AJP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110

    CAS  PubMed  Google Scholar 

  • Ayan AK, Çirak C, Kevseroğlu K, Sökmen A (2005) Effects of explants types and different concentrations of sucrose and phytoharmones on plant regeneration and hypericin content in Hypericum perforatum L. Turk J Agric For 29:197–204

    CAS  Google Scholar 

  • Baenas N, Garcia-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19:13541–13563

    PubMed  PubMed Central  Google Scholar 

  • Bagdonaite E, Martonfi P, Repcak M et al (2012) Variation in concentrations of major bioactive compounds in Hypericum perforatum L. from Lithuania. Ind Crop Prod 35:302–308

    CAS  Google Scholar 

  • Bais HP, Vepachedu R, Lawrence CB et al (2003) Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L.). J Biol Chem 278:32413–32422

    CAS  PubMed  Google Scholar 

  • Banerjee A, Bandyopadhyay S, Raychaudhuri SS (2012) In vitro regeneration of Hypericum perforatum L. using thidiazuron and analysis of genetic stability of regenerants. Indian J Biotechnol 11:92–98

    CAS  Google Scholar 

  • Barber MS, McConnell VS, DeCaux BS (2000) Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways. Phytochemistry 54:53–56

    CAS  PubMed  Google Scholar 

  • Barnes J, Anderson LA, Phillipson JD (2001) St. John’s wort (Hypericum perforatum L.). A review of its chemistry, pharmacology, and clinical properties. J Pharm Pharmacol 53:583–600

    CAS  PubMed  Google Scholar 

  • Beerhues L (2006) Molecules of interest-hyperforin. Phytochemistry 67:2201–2207

    CAS  PubMed  Google Scholar 

  • Belkheir AK, Gaid M, Liu B, Hänsch R, Beerhues L (2016) Benzophenone synthase and chalcone synthase accumulate in the mesophyll of Hypericum perforatum leaves at different developmental stages. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00921

    Article  PubMed  PubMed Central  Google Scholar 

  • Benedi J, Arroyo R, Romero C et al (2004) Antioxidant properties and protective effects of a standardized extract of Hypericum perforatum on hydrogen peroxide-induced oxidative damage in PC12 cells. Life 75:1263–1276

    CAS  Google Scholar 

  • Borchardt JR, Wyse DL, Sheaffer CC et al (2008) Antimicrobial activity of native and naturalized plants of Minnesota and Wisconsin. J Med Plants Res 2:98–110

    Google Scholar 

  • Boubakir Z, Beuerle T, Liu B et al (2005) The first prenylation step in hyperforin biosynthesis. Phytochemistry 66:51–57

    CAS  PubMed  Google Scholar 

  • Briese D, Campbell M, Faithfull I (2000) Best practice management guide for environmental weeds. Weeds CRC. https://doi.org/www.waite.adelaide.edu.au/CRCWMS

  • Brugger GA, Lamotte O, Vandelle E et al (2006) Early signalling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19(7):711–724

    Google Scholar 

  • Bruni R, Sacchetti G (2009) Factors affecting polyphenol biosynthesis in wild and field grown St. John’sWort (Hypericum perforatum L. Hypericaceae/Guttiferae). Molecules 14:682–725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brutovska R, Cellarova E, Schubert I (2000) Cytogenetic characterization of three Hypericum species by in situ hybridization. Theor Appl Genet 101:46–50

    CAS  Google Scholar 

  • Buckley YM, Briese DT, Rees M (2003) Demography and management of the invasive plant species Hypericum perforatum L. Using multi-level mixed-effects models for characterizing growth, survival, and fecundity in a long-term data set. J Appl Ecol 40:481–493

    Google Scholar 

  • Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776:86–107

    CAS  PubMed  Google Scholar 

  • Campbell MH, May CE, Southwell IA et al (1997) Variation in Hypericum perforatum L. (St John’s wort) in New South Wales. Plant Prot Q 12:64–66

    CAS  Google Scholar 

  • Cellarova E, Kimakova K, Brutovska R (1992) Multiple shoot formation and phenotypic changes of R0 regenerants in Hypericum perforatum L. Acta Biotechnol 12:445–452

    Google Scholar 

  • Cervo L, Rozio M, Ekalle-Soppo CB et al (2002) Role of hyperforin in the antidepressant-like activity of Hypericum perforatum extracts. Psychopharmacology 164:423–428

    CAS  PubMed  Google Scholar 

  • Charchoglyan A, Abrahamyan A, Fujii I (2007) Differential accumulation of hyperforin and secohyperforin in Hypericum perforatum tissue cultures. Phytochemistry 68:2670–2677

    CAS  PubMed  Google Scholar 

  • Chavez ML, Chavez PI (1997) Saint John’s wort. Hosp Pharm 32(12):1621–1632

    Google Scholar 

  • Conceição L, Ferrares F, Tavares R et al (2006) Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochem 67:149–155

    Google Scholar 

  • Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tiss Organ Cult 106:279–288

    CAS  Google Scholar 

  • Crockett SL, Schaneberg L, Khan IA (2005) Phytochemical profiling of new and oldworld Hypericum (St. John’s Wort) species. Phytochem Anal 16:479–485

    CAS  PubMed  Google Scholar 

  • Cui XH, Chakrabarty D, Lee EJ, Paek KY (2010) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresour Technol 101:4708–4716

    CAS  PubMed  Google Scholar 

  • Dadgar S, Hagens O, Dadgar SR (2006) Structural model of the OPA1 GTPase domain may explain the molecular consequences of a novel mutation in a family with autosomal dominant optic atrophy. Exp Eye Res 83(3):702–706

    CAS  PubMed  Google Scholar 

  • Dall AR, Ferraz A, Bernardi AP et al (2005) Bioassay-guided isolation of antimicrobial benzopyrans and phloroglucinol derivatives from Hypericum species. Phytother Res 19:291–293

    Google Scholar 

  • DerMarderosian A, Beutler J (2002) The natural review of products, vol 2. Facts and Comparisons, St Louis, pp 512–513

    Google Scholar 

  • Durango D, Pulgarin N, Echeverri F et al (2013) Effect of salicylic acid and structurally related compounds in the accumulation of phytoalexins in cotyledons of common bean (Phaseolus vulgaris L.) cultivars. Molecules 18:10609–10628

    CAS  PubMed  PubMed Central  Google Scholar 

  • English DS, Das K, Ashby KD et al (1997) Excited-state photophysics of hypericin and its hexamethoxy analog: intramolecular proton transfer as a nonradiative process in hypericin. J Am Chem Soc 119:11585–11590

    CAS  Google Scholar 

  • Fava M, Alpert J, Nierenberg AA, Mischoulon D, Otto MW, Zajecka J, Murck H, Rosenbaum JF (2005) A double-blind, randomized trial of St John’s Wort, fluoxetine, and placebo in major depressive disorder. J Clin Psychopharmacol 25(5):441–447

    CAS  PubMed  Google Scholar 

  • Ferrari F, Pasqua G, Monacelli B et al (2005) Xanthones from calli of Hypericum perforatum subsp. perforatum. Nat Prod Res 19:171–176

    CAS  PubMed  Google Scholar 

  • Ferrer J, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6:775–784. https://doi.org/10.1038/11553

    Article  CAS  PubMed  Google Scholar 

  • Ferrer J, Austin M, Stewart CJ, Noel J (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    CAS  PubMed  Google Scholar 

  • Filippini R, Piovan A, Borsarini A et al (2010) Study of dynamic accumulation of secondary metabolites in three subspecies of Hypericum perforatum. Fitoterapia 81:115–119

    CAS  PubMed  Google Scholar 

  • Franklin G, Dias ACP (2006) Organogenesis and embryogenesis in several Hypericum perforatum genotypes. Vitro Cell Dev Biol Plant 42:324–330

    CAS  Google Scholar 

  • Franklin G, Dias ACP (2011) Chlorogenic acid participates in the regulation of shoot, root and root hair development in Hypericum perforatum. Plant Physiol Biochem 49:835–842

    CAS  PubMed  Google Scholar 

  • Franklin G, Oliveira M, Dias ACP (2007) Production of transgenic Hypericum perforatum plants via particle bombardment-mediated transformation of novel organogenic cell suspension cultures. Plant Sci 172:1193–1203

    CAS  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A et al (2007) Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell, Tissue Organ Cult 89:1–13

    CAS  Google Scholar 

  • Gadzovska-Simic S, Tusevski O, Antevski S et al (2012) Secondary metabolite production in Hypericum perforatum L. cell suspensions upon elicitation with fungal mycelia from Aspergillus flavus. Arch Biol Sci 64:113–121

    Google Scholar 

  • Gadzovska-Simic S, Tusevski O, Delaunay Maury S (2014) Effects of polysaccharide elicitors on secondary metabolite production and antioxidant response in Hypericum perforatum L. shoot cultures. Sci World J. https://doi.org/10.1155/2014/609649

    Article  Google Scholar 

  • Gai F, Fehr MJ, Petrich JW (1994) Observation of excited-state tautomerization in the antiviral agent hypericin and identification of its fluorescent species. J Phys Chem 98:5184–5195

    Google Scholar 

  • Gaid M, Haas P, Beuerle T, Scholl S, Beerhues L (2016) Hyperforin production in Hypericum perforatum root cultures. J Biotechnol 222:47–55

    CAS  PubMed  Google Scholar 

  • Goel MK, Kukreja AK, Bisht NS (2008) In vitro manipulations in St. John’swort (Hypericum perforatum L.) for incessant and scale up micropropagation using adventitious roots in liquid medium and assessment of clonal fidelity using RAPD analysis. Plant Cell, Tissue Organ Cult 96:1–9

    Google Scholar 

  • Grandjenette C, Schnekenburger M, Morceau F et al (2015) Dual induction of mitochondrial apoptosis and senescence in chronic myelogenous leukemia by myrtucommulone A. Anticancer Agents Med Chem 15(3):363–373

    CAS  PubMed  Google Scholar 

  • Greeson JF, Sanford B, Monti DA (2001) St. John’s wort (Hypericum perforatum): are view of the current pharmacological, toxicological, and clinical literature. Psychopharmacology 153:402–414

    CAS  PubMed  Google Scholar 

  • Griffith TN, Varela-Nallar L, Dinamarca MC (2010) Neurobiological effects of Hyperforin and its potential in Alzheimer’s disease therapy. Curr Med Chem 17:391–406

    CAS  PubMed  Google Scholar 

  • Hammer KD, Hillwig ML, Neighbors JD (2008) Pseudohypericin is necessary for the light activated inhibition of prostaglandin E2 pathways by a 4 component system mimicking an Hypericum perforatum fraction. Phytochemistry 69(12):2354–2362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer KD, Birt DF (2014) Evidence for contributions of interactions of constituents to the anti-inflammatory activity of Hypericum perforatum. Crit Rev Food Sci Nutr 54:781–789. https://doi.org/10.1080/10408398.2011.607519

    Article  CAS  PubMed  Google Scholar 

  • Handerson T, Pawelek JM (2003) Beta-1,6-branched oligosaccharides and coarse vesicles: a common, pervasive phenotype in melanoma and other human cancers. Cancer Res 63:5363–5369

    CAS  PubMed  Google Scholar 

  • Handerson T, Berger A, Harigopol M et al (2007) Melanophages reside in hypermelanotic, aberrantly glycosylated tumor areas and predict improved outcome in primary cutaneous malignant melanoma. J Cutan Pathol 34:679–686

    PubMed  Google Scholar 

  • Hersey P, Zhang XD (2008) Adaptation to ER stress as a driver of malignancy and resistance to therapy in human melanoma. Pigment Cell Melanoma Res 21:358–367

    CAS  PubMed  Google Scholar 

  • Holscher D, Shroff R, Knop K et al (2009) Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level: distribution of secondary metabolites in Arabidopsis thaliana and Hypericum species. Plant J 60:907–918

    PubMed  Google Scholar 

  • Huang LF, Wang ZH, Chen SL (2014) Hypericin: chemical synthesis and biosynthesis. Chin J Nat Med 12:81–88

    CAS  PubMed  Google Scholar 

  • Jaaola L, Hohtola A (2010) Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Environ 33:1239–1247

    Google Scholar 

  • Jakubowska M, Michalczyk W, Pyka DJ et al (2013) Nitrosylhemoglobin in photodynamically stressed human tumors growing in nude mice. Nitric Oxide 35:79–88

    CAS  PubMed  Google Scholar 

  • Jang MH, Lee TH, Shin MC, Bahn GH, Kim JW, Shin DH, Kim CJ (2002) Protective effect of Hypericum perforatum L. (St. John's wort) against hydrogen peroxide-induced apoptosis on human neuroblastoma cells. Neurosci Lett 329(2):177–180

    CAS  PubMed  Google Scholar 

  • Jez JM, Noel JP (2002) Reaction mechanism of chalcone isomerase: pH dependence, diffusion control, and product binding differences. J Biol Chem 277:1361–1369

    CAS  PubMed  Google Scholar 

  • Jez JM, Bowman ME, Dixon RA, Noel JP (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Biol 7:786–791

    CAS  PubMed  Google Scholar 

  • Jung HW, Tschaplinski TJ, Wang L et al (2009) Priming in systemic plant immunity. Science 324:89–91

    PubMed  Google Scholar 

  • Kalyanaraman B (2013) Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox Biol 1:244–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karioti A, Bilia AR (2010) Hypericins as potential leads for new therapeutics. Int J Mol Sci 11:562–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karppinen K, Hohtola A (2008) Molecular cloning and tissue-sepcific expression of two cDNAs encoding polyketide synthases from Hypericum perforatum. J Plant Physiol 165:1079–1086

    CAS  PubMed  Google Scholar 

  • Kessel M, Martinet W, Rubio N et al (2011) Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage. J Cell Mol Med 15:1402–1414

    Google Scholar 

  • Kirakosyan A, Hayashi H, Inoue K et al (2000) Stimulation of the production of hypericins by mannan in Hypericum perforatum shoot cultures. Phytochemistry 53:345–348

    CAS  PubMed  Google Scholar 

  • Klingauf P, Beuerle T, Mellenthin A et al (2005) Biosynthesis of the hyperforin skeleton in Hypericum calycinum cell cultures. Phytochemistry 66:139–145

    CAS  PubMed  Google Scholar 

  • Koch MA, Scheriau C, Betzin A et al (2013) Evolution of cryptic gene pools in Hypericum perforatum: the influence of reproductive system and gene flow. Ann Bot 111:1083–1094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosuth J, Katkovcinova Z, Olexova P et al (2007) Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L. Plant Cell Rep 26:211–217

    CAS  PubMed  Google Scholar 

  • Kwiecień I, Smolin J, Beerhues L, Ekiert H (2018) The impact of media composition on production of flavonoids in agitated shoot cultures of the three Hypericum perforatum L. cultivars ‘Elixir’, ‘Helos’, and ‘Topas’. Vitro Cell Dev Biol: Plant. 54:332–340. https://doi.org/10.1007/s11627-018-9900-7

    Article  CAS  PubMed  Google Scholar 

  • Lavie G, Mazur Y, Lavie D et al (1995) The chemical and biological properties of hypericin—a compound with a broad spectrum of biological activities. Med Res Rev 15:111–119

    CAS  PubMed  Google Scholar 

  • Lazova R, Pawelek JM (2009) Why do melanomas get so dark? Exp Dermatol 18:934–938

    PubMed  Google Scholar 

  • Lazova R, Klump V, Pawelek J (2010) Autophagy in cutaneous malignant melanoma. J Cutan Pathol 37:256–268

    PubMed  Google Scholar 

  • Liu B, Paul FH, Schmidt W, Beerhues L (2003) Benzophenone synthase and chalcone synthase from Hypericum androsaemum cell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of two polyketide synthases. Plant J 34:847–855

    CAS  PubMed  Google Scholar 

  • Males Z, Brantner AH, Sovic K et al (2006) Comparative phytochemical and antimicrobial investigations of Hypericum perforatum L. subsp. perforatum and H. perforatum subsp. angustifolium (DC.) Gaudin. Acta Pharm 56:359–367

    CAS  PubMed  Google Scholar 

  • Mateja G, Vekoslava S, Samo K (2010) Flavonoid, tannin and hypericin concentrations in the leaves of St. John’s wort (Hypericum perforatum L.) are affected by UV-B radiation levels. Food Chem 122:471–474

    Google Scholar 

  • Maury W, Price JP, Brindley MA (2009) Identification of light-independent inhibition of human immu-nodeficiency virus-1 infection through bioguided fractionation of Hypericum perforatum. Virol J 6:101

    PubMed  PubMed Central  Google Scholar 

  • Menegazzi M, Paola R, Mazzon E et al (2006) Hypericum perforatum attenuates the development of carrageenan-induced lung injury in mice. Free Radic Biol Med 40(5):740–753

    CAS  PubMed  Google Scholar 

  • Merhi F, Tang R, Piedfer M et al (2011) Hyperforin inhibits Akt1 kinase activity and promotes caspase-mediated apoptosis involving Bad and Noxa activation in human myeloid tumor cells. PLoS ONE 6:e25963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michalska K, Fernades H, Sikorski M et al (2010) Crystal structure of Hyp-1, a St. John’s wort protein implicated in the biosynthesis of hypericin. J Struct Biol 169:161–171

    CAS  PubMed  Google Scholar 

  • Mir MY, Kamili AN, Hassan QP, Rafi S, Parray JA, Jan S (2018) In vitro regeneration and free radical scavenging assay of Hypericum perforatum L. Acad Sci Lett, Natl. https://doi.org/10.1007/s40009-018-0699-x

    Book  Google Scholar 

  • Miroslav S, Odeta C, Daniel K et al (2016) Differentially expressed genes in hypericin-containing Hypericum perforatum leaf tissues as revealed by De Novo Assembly of RNA-Seq. Plant Mol Biol Rep. https://doi.org/10.1007/s11105-016-0982-2

    Article  Google Scholar 

  • Murch S, Saxena PK (2002) Melatonin: a potential regulator of plant growth and development? In vitro Cell Dev Biol Plant 38:531–536

    CAS  Google Scholar 

  • Murch SJ, Krishna RS, Saxena PK (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep 19:698–704

    CAS  PubMed  Google Scholar 

  • Niranjana HM, Kim YS, Park SY et al (2014) Hypericins: biotechnological production from cell and organ cultures. Appl Microbiol Biotechnol 98:9187–9198

    Google Scholar 

  • Nurk NM, Crockett SL (2011) Morphological and phytochemical diversity among Hypericum Species of the mediterranean basin. Med Aromat Plant Sci Biotechnol 5:14–28

    PubMed  PubMed Central  Google Scholar 

  • Palmer DC, Keller WA (2011) Plant regeneration from petal explants of Hypericum perforatum L. Plant Cell Tissue Org Cult 105:129–134

    CAS  Google Scholar 

  • Patocka J (2003) The chemistry, pharmacology and toxicology of the biologically active constituents of the herb Hypericum perforatum L. J Appl Biomed 1:61–70

    CAS  Google Scholar 

  • Pasqua G, Avato P, Monacelli B, Santamaria AR, Argentieri MP (2003) Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum cv. Topas. Plant Sci 165:977–982

    CAS  Google Scholar 

  • Pavlik M, Vacek J, Klejdus B et al (2007) Hypericin and hyperforin production in St. John’s wort in vitro culture: influence of saccharose, polyethylene glycol, methyl jasmonate, and Agrobacterium tumefaciens. J Agric Food Chem 55:6147–6153

    CAS  PubMed  Google Scholar 

  • Petrich JW (2000) Excited-state intramolecular H-atom transfer in nearly symmetrical perylenequinones: hypericin, hypocrellin, and their analogs. Int Rev Phys Chem 19:479–500

    CAS  Google Scholar 

  • Ploss O, Petereit F, Nahrstedt A (2001) Procyanidins from the herb of Hypericum perforatum. Pharmazie 56:509–511

    CAS  PubMed  Google Scholar 

  • Pretto FR, Santarem ER (2000) Callus formation and plant regeneration from Hypericum perforatum leaves. Plant Cell, Tissue Organ Cult 62:107–113

    CAS  Google Scholar 

  • Reuter H (1998) Chemistry and biology of Hypericum perforatum (St. John’s wort). ACS Symp Ser 691:287–298

    CAS  Google Scholar 

  • Rutkowski DT, Kaufman RJ (2007) That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem Sci 32:469–476

    CAS  PubMed  Google Scholar 

  • Saddiqe Z, Naeem I, Maimoona A (2010) A review of the antibacterial activity of Hypericum perforatum L. J Ethnopharmacol 131:511–521

    CAS  PubMed  Google Scholar 

  • Savio LEB, Astarita LV, Santarém ER (2012) Secondary metabolism in micropropagated Hypericum perforatum L. grown in non-aerated liquid medium. Plant Cell, Tissue Organ Cult (PCTOC) 108:465–472

    CAS  Google Scholar 

  • Schempp CM, Pelz K, Wittmer A, Schopf E, Simon JC (1999) Antibacterial activity of hyperforin from St. John's wort, against multiresistant Staphylococcus aureus and gram-positive bacteria. Lancet 353:2129

    CAS  PubMed  Google Scholar 

  • Schempp CM, Kirkin V, Simon-Haarhaus B et al (2002) Inhibition of tumour cell growth by hyperforin, a novel anticancer drug from St. Johnʼs wort that acts by induction of apoptosis. Oncogene 21:1242–1250

    CAS  PubMed  Google Scholar 

  • Schroder J (1999) The chalcone/stilbene synthase-type family of condensing enzymes. In: Sankawa U (ed) Comprehensive Natural Products Chemistry, vol 1. Elsevier, Amsterdam, pp 749–771

    Google Scholar 

  • Sell TS, Belkacemi T, Flockerzi V, Beck A (2014) Protonophore properties of hyperforin are essential for its pharmacological activity. Sci Rep 4:7500. https://doi.org/10.1038/srep07500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shazia F, Siddiqui MA, Ray PC et al (2014) Genetic diversity analysis in the Hypericum perforatum populations in the Kashmir valley by using inter-simple sequence repeats (ISSR) markers. Afr J Biotechnol 13(1):18–31

    Google Scholar 

  • Sirvent T, Gibson D (2002) Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol Mol Plant Pathol 60:311–320

    CAS  Google Scholar 

  • Soelberg J, Jorgensen LB, Jager AK (2007) Hyperforin accumulates in the translucent glands of Hypericum perforatum. Ann Bot 99:1097–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tedeschi E, Menegazzi M, Margotto D et al (2003) Anti-inflammatory actions of St John’s wort: inhibition of human inducible nitric-oxide synthase expression by down regulating signal transducer and activator of transcription-1alpha (STAT-1alpha) activation. J Pharmacol Exp Ther 307(1):254–261

    CAS  PubMed  Google Scholar 

  • Tian J, Zhang F, Cheng J, Guo S, Liu P, Wang H (2014) Antidepressant-like activity of adhyperforin, a novel constituent of Hypericum perforatum L. Sci Rep 4:5632. https://doi.org/10.1038/srep05632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travis S, Bais W, Vivanco HP (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John's wort). Phytochemistry 60:289–293

    Google Scholar 

  • Tusevski O, Petreska SJ, Stefova M et al (2014) Agrobacterium enhances xanthone production in Hypericum perforatum cell suspensions. Plant Growth Regul. https://doi.org/10.1007/s10725-014-9989-6

    Article  Google Scholar 

  • Tusevski O, Stanoeva JP, Stefova M, Gadzovska-Simic S (2015) Agrobacterium enhances xanthone production in Hypericum perforatum cell suspensions. Plant Growth Regul 76:199–210

    CAS  Google Scholar 

  • Tusevski O, Stanoeva JP, Markoska E, Brndevska N, Stefova M, Simic SG (2016) Callus cultures of Hypericum perforatum L. a novel and efficient source for xanthone production. Plant Cell Tissus Organ Cult 125:309–319

    CAS  Google Scholar 

  • Valletta A, De Angelis G, Badiali C, Miccheli Brasili E, Di Cocco ME, Pasqua G (2016) Acetic acid acts as an elicitor exerting a chitosan-like effect on xanthone biosynthesis in Hypericum perforatum L. root cultures. Plant Cell Rep 35:1009–1020

    CAS  PubMed  Google Scholar 

  • Victor BG, Wafaa MA, Hamed S (2014) Preliminary phytochemical screening and evaluation of in vitro oxidant activity of Iraqi species of Hypericum perforatum aerial part. Int Res J Pharm 5:369–373

    Google Scholar 

  • Walker TS, Bais HP, Vivanco JM (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 60:289–293

    CAS  PubMed  Google Scholar 

  • Wang J, Qian J, Yao L et al (2015) Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresour Bioprocess 2:5

    Google Scholar 

  • Wiechmann K, Hans M, Dagmar F, Johann J (2015) The acylphloroglucinols hyperforin and myrtucommulone A cause mitochondrial dysfunctions in leukemic cells by direct interference with mitochondria. Apoptosis 20:1508–1517

    CAS  PubMed  Google Scholar 

  • Woelk H (2000) Comparison of St John’s wort and imipramine for treating depression: randomised controlled trial. BMJ 321(7260):536–539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wojcik A, Podstolski A (2007) Leaf explant response in in vitro culture of St. John’s wort (Hypericum perforatum L.). Acta Physiol Plant 29:151–156

    CAS  Google Scholar 

  • Wolfle U, Seelinger G, Christoph M et al (2014) Topical application of St. Johnʼs Wort (Hypericum perforatum). Planta Med 80:109–120

    PubMed  Google Scholar 

  • Yow CM, Tang HM, Chu ES et al (2012) Hypericin-mediated photodynamic antimicrobial effect on clinically isolated pathogens. Photochem Photobiol 88:626–632

    CAS  PubMed  Google Scholar 

  • Zanoli P (2004) Role of hyperforin in the pharmacological activities of St. John’s Wort. CNS Drug Rev 10(3):203–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Davis L, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    CAS  PubMed  Google Scholar 

  • Zobayed SMA, Saxena PK (2004) Production of St. John’s wort plants under controlled environment for maximizing biomass and secondary metabolites. Vitro Cell Dev Biol Plant 40:108–114

    CAS  Google Scholar 

  • Zobayed SMA, Murch SJ, Rupasinghe HPV (2003) Elevated carbon supply altered hypericin and hyperforin contents of St. John’s wort (Hypericum perforatum) grown in bioreactors. Plant Cell Tissus Organ Cult 75:143–149

    CAS  Google Scholar 

  • Zobayed SMA, Murch SJ, Rupasinghe HPV (2004) In vitro production and chemical characterization of St. John’swort (Hypericum perforatum L. cv ‘NewStem’). Plant Sci 166:333–340

    CAS  Google Scholar 

  • Zobayed SMA, Afreen F, Goto E et al (2006) Plant–environment interactions: accumulation of hypericin in dark glands of Hypericum perforatum. Ann Bot 98:793–804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zubricka D, Misianikova A, Henzelyova J et al (2015) Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Rep 34:1953–1962

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yaseen Mir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, M.Y., Hamid, S., Kamili, A.N. et al. Sneak peek of Hypericum perforatum L.: phytochemistry, phytochemical efficacy and biotechnological interventions. J. Plant Biochem. Biotechnol. 28, 357–373 (2019). https://doi.org/10.1007/s13562-019-00490-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-019-00490-7

Keywords

Navigation