Skip to main content
Log in

Theoretical Analysis of Changes in the Solution Composition during Anodic Electrolysis of Bromide

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The changes in indicator-electrode potential and (quasi)equilibrium solution composition in the anodic compartment of a model electrolyzer initially filled with aqueous electrolyte containing 0.5 M concentration of bromide anions are calculated under the condition that pH 2 is maintained constant in this compartment. The theoretical analysis is carried out for three different hypotheses concerning the possible depth of electrolysis and the nature of processes involved: (1) no bromine compounds with positive degree of oxidation are formed; (2) bromine compounds with the degree of oxidation not higher than +1 are formed; (3) the process can involve the formation of both bromate ions and bromine compounds with the lower degrees of oxidation (\({\text{Br}}_{{\text{3}}}^{ - },\)\({\text{Br}}_{{\text{5}}}^{ - },\) Br2, BrO, HBrO) in solution as well as the liquid phase of bromine \(\left( {{\text{Br}}_{{\text{2}}}^{{{\text{liq}}}}} \right).\) All electrochemical and chemical reactions involving bromine-containing species taken into account within the framework of hypotheses of system evolution 1, 2, and 3 are assumed to be (quasi)equilibrium, and the electric current through the cell separator is assumed to be provided by supporting electrolyte ions. Methods are proposed for experimental determination of the version of evolution of Br-containing anolyte during electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ferro, S. and De Battisti, A., The bromine electrode. Part I: Adsorption phenomena at polycrystalline platinum electrodes, J. Appl. Electrochem., 2004, vol. 34, no. 10, p. 981.

    Article  CAS  Google Scholar 

  2. Ferro, S., Orsan, C., and De Battisti, A., The bromine electrode. Part II: reaction kinetics at polycrystalline Pt, J. Appl. Electrochem., 2005, vol. 35, no. 3, p. 273.

    Article  CAS  Google Scholar 

  3. Ferro, S., The bromine electrode Part III: reaction kinetics at highly boron-doped diamond electrodes, J. Appl. Electrochem., 2005, vol. 35, no. 3, p. 279.

    Article  CAS  Google Scholar 

  4. Bergman, ME.H., Iourtchouk, T., and Rollin, J., The occurrence of bromate and perbromate on BDD anodes during electrolysis of aqueous systems containing bromide: first systematic experimental studies, J. Appl. Electrochem., 2011, vol. 41, no. 9, p. 1109.

    Article  Google Scholar 

  5. Osuga, T. and Sugino, K., Electrolytic production of bromates, J. Electrochem. Soc., 1957, vol. 104, no. 7, p. 448.

    Article  CAS  Google Scholar 

  6. Vacca, A., Mascia, M., Palmas, S., Mais, L., and Rizzardini, S., On the formation of bromate and chlorate ions during electrolysis with boron doped diamond anode for seawater treatment, J. Chem. Technol. Biotechnol., 2013, vol. 88, no. 12, p. 2244.

    Article  CAS  Google Scholar 

  7. Cettou, P., Robertson, P.M., and Ibl, N., On the electrolysis of aqueous bromide solutions to bromate, Electrochim. Acta, 1984, vol. 29, no. 7, p. 875.

    Article  CAS  Google Scholar 

  8. Pavlovic, O.Z., Krstajić, N.V., and Spasojević, M.D., Formation of bromates at a RuO2/TiO2 titanium anode, Surf. Coat. Technol., 1988, vol. 34, no. 2, p. 177.

    Article  CAS  Google Scholar 

  9. Conway, B.E., Phillips, Y., and Qian, S.Y., Surface electrochemistry and kinetics of anodic bromine formation at platinum, J. Chem. Soc., Faraday Trans., 1995, vol. 91, no. 2, p. 283.

    Article  CAS  Google Scholar 

  10. Xu, J., Georgescu, N.S., and Scherson, D.A., The oxidation of bromide on platinum electrodes in aqueous acidic solutions: Electrochemical and in situ spectroscopic studies, J. Electrochem. Soc., 2014, vol. 161, no. 6, p. 392.

    Article  Google Scholar 

  11. Johnson, D.C. and Bruckenstein, S., A ring-disk study of HOBr formation at platinum electrodes in 1.0 M H2SO4, J. Electrochem. Soc., 1970, vol. 117, no. 4, p. 460.

    Article  CAS  Google Scholar 

  12. Grgur, B.N., Electrochemical oxidation of bromides on DSA/RuO2 Anode in the semi-industrial batch reactor for on-site water disinfection, J. Electrochem. Soc., 2019, vol. 166, no. 2, p. 50.

    Article  Google Scholar 

  13. Petrov, M.M., Loktionov, P.A., Konev, D.V, and Antipov, A.E., Evolution of anolyte composition in the oxidative electrolysis of sodium bromide in a sulfuric acid medium, Russ. J. Electrochem., 2019, vol. 54, no. 12, p. 1233.

    Article  Google Scholar 

  14. Mastragostino, M. and Gramellini, C., Kinetic study of the electrochemical processes of the bromine/bromine aqueous system on vitreous carbon electrodes, Electrochim. Acta, 1985, vol. 30, no. 3, p. 373.

    Article  CAS  Google Scholar 

  15. Chang, J., Bennett, B., and Bard, A.J., Detection of an unstable intermediate in Br electro-oxidation to \({\text{Br}}_{{\text{3}}}^{ - }\) on a platinum electrode in nitrobenzene by scanning electrochemical microscopy, Electrochim. Acta, 2017, vol. 238, no. 238, p. 74.

    Article  CAS  Google Scholar 

  16. Allen, G.D., Buzzeo, M.C., Villagran, C., Hardacre, C., and Compton, R.G., A mechanistic study of the electro-oxidation of bromide in acetonitrile and the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide at platinum electrodes, J. Electroanal. Chem., 2005, vol. 575, no. 2, p. 311.

    Article  CAS  Google Scholar 

  17. Bennett, B., Chang, J., and Bard, A.J., Mechanism of the Br/Br2 redox reaction on platinum and glassy carbon electrodes in nitrobenzene by cyclic voltammetry, Electrochim. Acta, 2016, vol. 219, p. 1.

    Article  CAS  Google Scholar 

  18. Petrov, M.M., Konev, D.V., Kuznetsov, V.V., and Antipov, A.E., Electrochemically driven evolution of Br-containing aqueous solution composition, J. Electroanal. Chem., 2019, vol. 836, p. 125.

    Article  CAS  Google Scholar 

  19. Kelsall G.H., Welham N.J., and Diaz M.A., Thermodynamics of Cl–H2O, Br–H2O, I–H2O, Au–Cl–H2O, Au–Br–H2O and Au–I–H2O systems at 298 K, J. Electroanal. Chem., 1993, vol. 361, no. 1–2, p. 13.

    Article  CAS  Google Scholar 

  20. Field, R.J. and Forsterling, H.-D., On the oxybromine chemistry rate constants with cerium ions in the Field‑Koros‑Noyes mechanism of the Belousov–Zhabotinskii reaction: The equilibrium HBrO2 + \({\text{BrO}}_{{\text{3}}}^{ - }\) + H+\({\text{2BrO}}_{{\text{2}}}^{*}\) + H2O, J. Phys. Chem., 1986, vol. 90, no. 21, p. 5400.

    Article  CAS  Google Scholar 

  21. Kshirsagar, G. and Field, R.J., A kinetic and thermodynamic study of component processes in the equilibrium 5 HOBr = 2Br2+ \({\text{BrO}}_{{\text{3}}}^{ - }\) + 2H2O + H+, J. Phys. Chem., 1988, vol. 92, no. 25, p. 7074.

    Article  CAS  Google Scholar 

  22. Gyorgyi, L., Turanyi, T., and Field, R.J., Mechanistic details of the oscillatory Belousov-Zhabotinskii reaction, J. Phys. Chem., 1990, vol. 94, no. 18, p. 7162.

    Article  CAS  Google Scholar 

  23. Alves, W.A., Téllez, C.A., Sala, S.O., Santos, P.S., and Faria, R.B., Dissociation and rate of proton transfer of HXO3 (X = Cl, Br) in aqueous solution determined by Raman spectroscopy, J. Raman Spectrosc., 2001, vol. 32, p. 1032.

    Article  CAS  Google Scholar 

  24. Tarasevich, M.R., Sadkowsky, A., and Yeager, E., Oxygen electrochemistry, in Comprehensive Treatise of Electrochemistry, 1983, London: Plenum, p. 301.

    Google Scholar 

  25. Reier, T., Oezaslan, M., and Strasser P., Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials, ACS Catal., 2012, vol. 2, p. 1765.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Education and Science of the Russian Federation (Agreement of September 26, 2017, no. 14.574.21.0150, UIS: RFMEFI57417X0150).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Petrov or M. A. Vorotyntsev.

Ethics declarations

The authors state the absence of any conflict of interests.

Additional information

Translated by T. Safonova

This paper is dedicated to the 80th anniversary of Professor V.V. Malev who has made a considerable contribution into modern directions of electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, M.M., Konev, D.V., Antipov, A.E. et al. Theoretical Analysis of Changes in the Solution Composition during Anodic Electrolysis of Bromide. Russ J Electrochem 55, 1058–1067 (2019). https://doi.org/10.1134/S1023193519110120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519110120

Keywords:

Navigation