Skip to main content
Log in

Paradox of the Variation of the Bulk Resistance of Potassium Ion-Selective Electrode Membranes within Nernstian Potentiometric Response Range

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Bulk resistance and other electrochemical properties of membranes of K+-selective electrodes (ISEs) containing valinomycin are measured by means of chronopotentiometry and electrochemical impedance. It is shown that the bulk resistance of the membranes, within the Nernstian potentiometric response range, increases along decrease of KCl concentration in solution. Analogous results were reported earlier for Ca2+ and NO\(_{3}^{ - }\) ISEs. This non-constancy of the bulk resistance is in conflict with current views on the mechanism of ISEs response. Tentatively, this paradox is ascribed to heterogeneity of membranes due to water uptake from solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Morf, W.E., The Principles of Ion-Selective Electrodes and of Membrane Transport, Budapest: Akademiai Kiado, 2003.

    Google Scholar 

  2. Bakker, E., Buhlmann, P., and Pretsch, E., Chem. Rev., 1997, vol. 97, p. 3083.

    Article  CAS  Google Scholar 

  3. Bobacka, J., Ivaska, A., and Lewenstam, A., Chem. Rev., 2008, vol. 108, p. 329.

    Article  CAS  Google Scholar 

  4. Mikhelson, K.N., Ion-Selective Electrodes, Heidelberg, New York, Dordrecht, London: Springer, 2013.

    Book  Google Scholar 

  5. Mikhelson, K.N. and Peshkova, M.A., Russ. Chem. Rev., 2015, vol. 84, p. 555.

    Article  Google Scholar 

  6. Shul’ga, A.A., Ahlers, B., and Cammann, K., Electroanal. Chem. Interfacial Electrochem., 1995, vol. 395, p. 305.

    Google Scholar 

  7. Cammann, K., Ahlers, B., Henn, D., Dumschat, C., and Shul’ga, A.A., Sens. Actuat. B, 1996, vol. 35, p. 26.

  8. Kim, Y. and Amemiya, S., Anal. Chem., 2008, vol. 80, p. 6056.

    Article  CAS  Google Scholar 

  9. Greenawalt, P.J. and Amemiya, S., Anal. Chem., 2016, vol. 88, p. 5827.

    Article  CAS  Google Scholar 

  10. Yuan, D., Cuartero, M., Crespo, G.A., and Bakker, E., Anal. Chem., 2017, vol. 89, p. 586.

    Article  CAS  Google Scholar 

  11. Yuan, D., Cuartero, M., Crespo, G.A., and Bakker, E., Anal. Chem., 2017, vol. 89, p. 595.

    Article  CAS  Google Scholar 

  12. Jarolimova, Z., Bosson, J., Labrador, G.M., Lacour, J., and Bakker, E., Electroanalysis, 2018, vol. 30, p. 650.

    Article  CAS  Google Scholar 

  13. Vanamo, U., Hupa, E., Yrjänä, V., and Bobacka, J., Anal. Chem., 2016, vol. 88, p. 4369.

    Article  CAS  Google Scholar 

  14. Han, T., Vanamo, U., and Bobacka, J., ChemElectroChem, 2016, vol. 3, p. 2071.

    Article  CAS  Google Scholar 

  15. Jarolímová, Z., Han, T., Mattinen, U., Bobacka, J., and Bakker, E., Anal. Chem., 2018, vol. 90, p. 8700.

    Article  Google Scholar 

  16. Jaworska, E., Pawlowski, P., Michalska, A., and Maksymiuk, K., Electroanalysis, 2018, vol. 30, p. 343.

    Article  Google Scholar 

  17. Mikhelson, K.N., Electroanalysis, 2003, vol. 15, p. 1236.

    Article  CAS  Google Scholar 

  18. Egorov, V.V., Novakovskii, A.D., and Zdrachek, E.A., Russ. J. Electrochem., 2018, vol. 54, p. 381.

    Article  CAS  Google Scholar 

  19. Egorov, V.V., Novakovskii, A.D., and Zdrachek, E.A., Anal. Chem., 2018, vol. 90, p. 1309.

    Article  CAS  Google Scholar 

  20. Morf, W.E., Badertscher, M., Zwickl, T., de Rooij, N.F., and Pretsch, E., J. Electroanal. Chem., 2002, vol. 526, p. 19.

    Article  CAS  Google Scholar 

  21. Ivanova, A.D., Koltashova, E.S., Solovyeva, E.V., Peshkova, M.A., and Mikhelson, K.N., Electrochim. Acta, 2016, vol. 213, p. 439.

    Article  CAS  Google Scholar 

  22. Sokalski, T. and Lewenstam, A., Electrochem. Commun., 2001, vol. 3, p. 107.

    Article  CAS  Google Scholar 

  23. Kucza, W., Danielewski, M., and Lewenstam, A., Electrochem. Commun., 2006, vol. 8, p. 416.

    Article  CAS  Google Scholar 

  24. Jasielec, J.J., Sokalski, T., Filipek, R., and Lewenstam, A., Anal. Chem., 2015, vol. 87, p. 8665.

    Article  CAS  Google Scholar 

  25. Szyszkiewicz, K., Jasielec, J.J., Danielewski, M., and Lewenstam, A., J. Electrochem. Soc., 2017, vol. 164, p. E3559.

    Article  CAS  Google Scholar 

  26. Shvarev, A.E., Rantsan, D.A., and Mikhelson, K.N., Sens. Actuat. B, 2001, vol. 76, p. 500.

    Article  CAS  Google Scholar 

  27. Kondratyeva, Ye.O., Solovyeva, E.V., Khripoun, G.A., and Mikhelson, K.N., Electrochim. Acta, 2018, vol. 259, p. 458.

    Article  CAS  Google Scholar 

  28. Ivanova, A. and Mikhelson, K., Sensors, 2018, vol. 18, p. 2062.

    Article  Google Scholar 

  29. Mikhelson, K.N., Bobacka, J., Lewenstam, A., and Ivaska, A., Electroanalysis, 2001, vol. 13, p. 876.

    Article  CAS  Google Scholar 

  30. Bühlmann, P., Pretsch, E., and Bakker, E., Chem. Rev., 1998, vol. 98, p. 1593.

    Article  Google Scholar 

  31. Mikhelson, K.N., Bobacka, J., Ivaska, A., Lewenstam, A., and Bochenska, M., Anal. Chem., 2002, vol. 74, p. 518.

    Article  CAS  Google Scholar 

  32. Mikhelson, K.N., Lutov, V.M., Sulko, K., and Stefanova, O.K., Sov. Electrochem., 1988, vol. 24, p. 1369.

    Google Scholar 

  33. Peshkova, M.A., Korobeynikov, A.I., and Mikhelson, K.N., Electrochim. Acta, 2008, vol. 53, p. 5819.

    Article  CAS  Google Scholar 

  34. Oesch, U. and Simon, W., Helv. Chim. Acta, 1979, vol. 62, p. 754.

    Article  CAS  Google Scholar 

  35. Bodor, S., Zook, J.M., Lindner, E., Tóth, K., and Gyurcsányi, R.E., J. Solid State Electrochem., 2009, vol. 13, p. 171.

    Article  CAS  Google Scholar 

  36. Zook, J., Bodor, S., Lindner, E., Tóth, K., and Gyurcsányi, R.E., Electroanalysis, 2009, vol. 21, p. 1923.

    Article  CAS  Google Scholar 

  37. Chan, A.D.C., Li, X., and Harrison, J.D., Anal. Chem., 1992, vol. 64, p. 2512.

    Article  CAS  Google Scholar 

  38. Li, Z., Li, X., Petrovic, S., and Harrison, D.J., Anal. Chem., 1996, vol. 68, p. 1717.

    Article  CAS  Google Scholar 

  39. Lindfors, T., Sundfors, F., Höfler, L., and Gyur-csányi, G.E., Electroanalysis, 2009, vol. 21, p. 1914.

    Article  CAS  Google Scholar 

  40. He, N. and Lindfors, T., Anal. Chem., 2013, vol. 85, p. 1006.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors kindly acknowledge Professor V.V. Malev for his interest in this study and stimulating discussions.

Funding

The study was performed with financial support from Russian Foundation for Basic Research, grant 19-03-00259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Mikhelson.

Ethics declarations

The authors declare the absence of conflict of interests.

Additional information

This paper is dedicated to the 80th anniversary of Professor V.V. Malev who has made a considerable contribution into modern directions of electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyeva, Y.O., Solovyeva, E.V., Khripoun, G.A. et al. Paradox of the Variation of the Bulk Resistance of Potassium Ion-Selective Electrode Membranes within Nernstian Potentiometric Response Range. Russ J Electrochem 55, 1118–1126 (2019). https://doi.org/10.1134/S1023193519110090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519110090

Keywords:

Navigation