Skip to main content
Log in

Synthesis and Ionic Conductivity of NaZr2(AsO4)x(PO4)3 –x

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Arsenate phosphates NaZr2(AsO4)x(PO4)3 –x are synthesized by the sol–gel method with subsequent annealing at 1123 K. Thus obtained specimens are investigated using X-ray diffraction analysis, IR and impedance spectroscopy. In the NaZr2(AsO4)x(PO4)3 –x system, continuous solid solution (0 ≤ x ≤ 3) with NaZr2(PO4)3 (NASICON) structure forms. According to the impedance spectroscopy data, an increase of the content of arsenic in the NaZr2(AsO4)x(PO4)3 –x system leads to an increase of the sodium-ionic conductivity; for NaZr2(AsO4)3, it reaches 8 × 10–5 S/cm at 773 K. At the same time, the activation energy of conductivity of this material (50 ± 1 kJ/mol) appears to be twice lower than the activation energy of conductivity of NaZr2(PO4)3 (100 ± 1 kJ/mol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Scrosati, B. and Garche, J., Lithium Batteries: Status, Prospects and Future, J. Power Sources, 2010, vol. 195, p. 2419.

    Article  CAS  Google Scholar 

  2. Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium-ion batteries, Russ. Chem. Rev., 2015, vol. 84, no. 8, p. 826.

    Article  CAS  Google Scholar 

  3. Fortov, V.E. and Popel’, O.S., Energetika v sovremennom mire (Energetics in the Modern World), Dolgoprudny: Publishing house “Intellekt”, 2011.

  4. Popel’, O.S. and Tarasenko, A.B., Modern kinds of electric energy storages and their application in independent and centralized power systems, Thermal Engineering, 2011, vol. 58, no. 11, p. 883.

    Article  Google Scholar 

  5. Yaroslavtsev, A.B., Stenina, I.A., Kulova, T.L., Skundin, A.M., and Desyatov, A.V., Nanomaterials for electrical energy storage, in Comprehensive Nanoscience and Nanotechnology, Andrews, D.L., Lipson, R.H., and Nann, T., Eds., vol. 5. Application of Nanoscience, Bradshaw, D.S, Ed., Amsterdam: Elsevier, 2019, p. 165.

    Chapter  Google Scholar 

  6. Slater, M.D., Kim, D., Lee, E., and Johnson, C.S., Sodium ion batteries, Adv. Funct. Mat., 2013, vol. 23, p. 947.

    Article  CAS  Google Scholar 

  7. Skundin, A.M., Kulova, T.L., and Yaroslavtsev, A.B., Sodium-ion batteries (a review), Russ. J. Electrochem., 2018, vol. 54, p. 113.

    Article  CAS  Google Scholar 

  8. Kim, S.W., Seo, D.H., Ma, X., Ceder, G., and Kang, K., Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries, Adv. Energy Mater., 2012, vol. 2, p. 710.

    Article  CAS  Google Scholar 

  9. Hong, S.Y., Kim, Y., Park, Y., Choi, A., Choi, N.S., and Lee, K.T., Charge carriers in rechargeable batteries: Na ions vs. Li ions, Energy Environ. Sci., 2013, vol. 6, p. 2067.

    Article  CAS  Google Scholar 

  10. Hueso, K.B., Armand, M., and Rojo, T., High Temperature Sodium Batteries: Status, Challenges and Future Trends, Energy Environ. Sci., 2013, vol. 6, p. 734.

    Article  CAS  Google Scholar 

  11. Ellis, B.L. and Nazar, L.F., Sodium and sodium-ion energy storage batteries, Curr. Op. Solid St. M., 2012, vol. 16, no. 4, p. 168.

    Article  CAS  Google Scholar 

  12. Jian, Z., Han, W., Lu, X., Yang, H., Hu, Y.-S., Zhou, J., Zhou, Z., Li, J., Chen, W., Chen, D., and Chen, L., Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries, Adv. Energy Mater., 2013, vol. 3, no. 2, p. 156.

    Article  CAS  Google Scholar 

  13. Senguttuvan, P., Rousse, G., Seznec, V., Tarascon, J.-M., and Palacin, M.R., Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries, Chem. Mater., 2011, vol. 23, no. 18, p. 4109.

    Article  CAS  Google Scholar 

  14. Kim, S. W., Seo, D.H., Ma, X., Ceder, G., and Kang, K., Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries, Adv. Energy Mater., 2012, vol. 2, p. 710.

    Article  CAS  Google Scholar 

  15. Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S., Research development on sodium-ion batteries, Chem. Rev., 2014, vol. 114, no. 23, p. 11636.

    Article  CAS  Google Scholar 

  16. Ponrouch, A., Marchante, E., Courty, M., Tarascon, J.-M., and Palacín, M.R., In search of an optimized electrolyte for Na-ion batteries, Energy Environm. Sci., 2012, vol. 5, p. 8572.

    Article  CAS  Google Scholar 

  17. Monti, D., Jónsson, E., Palacín, M.R., and Johansson, P., Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity, J. Power Sources, 2014, vol. 245, p. 630.

    Article  CAS  Google Scholar 

  18. Noor, S.A.M., Yoon, H., Forsyth, M., and MacFarlane, D.R., Gelled ionic liquid sodium ion conductors for sodium batteries, Electrochim. Acta, 2015, vol. 169, p. 376.

    Article  Google Scholar 

  19. Sawicki, M. and Shaw, L.L., Advances and challenges of sodium ion batteries as post lithium ion batteries, RSC Adv., 2015, vol. 5, p. 53129.

    Article  CAS  Google Scholar 

  20. Onchi, T., A material design on new sodium ion conductor for sodium–sulfur battery. I. NaAlO(CN)2 and NaxAl1 – x/3(CN)3 perovskite, Quantum Chem., 2012, vol. 112, p. 3777.

    Article  Google Scholar 

  21. Hayashi, A., Noi, K., Tanibata, N., Nagao, M., and Tatsumisago M., High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4, J. Power Sources, 2014, vol. 258, p. 420.

    Article  CAS  Google Scholar 

  22. Smaha, R.W., Roudebush, J.H., Herb, J.T., Seibel, E.M., Krizan, J.W., Fox, G.M., Huang, Q., Arnold, C.B., and Cava, R.J., Tuning sodium ion conductivity in the layered honeycomb oxide Na3 – xSn2 – xSbxNaO6, Inorg. Chem., 2015, vol. 54, p. 7985.

    Article  CAS  Google Scholar 

  23. Hibi, Y., Tanibata, N., Hayashi, A., and Tasumisago, M., Preparation of sodium ion conducting Na3PS4–NaI by a mechanochemical technique, Solid State Ionics, 2015, vol. 270, p. 6.

    Article  CAS  Google Scholar 

  24. Peet, J.R., Widdifield, C.M., Apperley, D.C., Hodgkinson, P., Johnson, M.R., and Radosavljević, Evans I., Na+ mobility in sodium strontium silicate fast ion conductors, Chem. Commun., 2015, vol. 51, p. 17163.

    Article  CAS  Google Scholar 

  25. Yaroslavtsev, A.B., Solid electrolytes: main prospects of research and development, Russ. Chem. Rev., 2016, vol. 85, p. 1255.

    Article  CAS  Google Scholar 

  26. Anantharamulu, N., Rao, K.K., Rambabu, G., Kumar, B.V., Radha, V., and Vital, M., A wide-ranging review on Nasicon type materials, J. Mater. Sci., 2011, vol. 46, no. 9, p. 2821.

    Article  CAS  Google Scholar 

  27. Didisheim, J.-J., Prince, E., and Wuensch, B.J., Neutron Rietveld analysis of structural changes in NASICON solid solutions Na1 + xZr2SixP3 − xO12 at elevated temperatures: x = 1.6 and 2.0 at 320°C, Solid State Ionics, 1986, vols. 18−19, Pt 2, p. 944.

  28. Jian, Z, Hu, Y.S., Ji, X, and Chen, W., NASICON-structured materials for energy storage, Adv. Mater., 2017, vol. 20, p. 29.

    Google Scholar 

  29. Stenina, I.A. and Yaroslavtsev, A.B., Low- and intermediate-temperature proton-conducting electrolytes, Inorg. Mater., 2017, vol. 53, no. 3, p. 253.

    Article  CAS  Google Scholar 

  30. Yaroslavtsev, A.B. and Stenina, I.A., Complex phosphates with the NASICON structure (MxA2(PO4)3), Russ. J. Inorg. Chem., 2006, vol. 51, Suppl. 1, p. S97.

    Article  Google Scholar 

  31. Pet’kov, V.I., Sukhanov, M.V., Shipilov, A.S., Kurazhkovskaya, V.S., Borovikova, E.Yu., Pinus, I.Y., and Yaroslavtsev, A.B., Synthesis and properties of LiZr2(AsO4)3 and LiZr2(AsO4)x(PO4)3 – x,Inorg. Mater., 2014, vol. 50, no. 3, p. 263.

    Article  Google Scholar 

  32. Pet’kov, V.I., Shipilov, A.S., Borovikova, E.Yu., Koval’skii, A.M., Stenina, I.A., and Yaroslavtsev, A.B., Synthesis, structure, IR-spectroscopic characterization, and ionic conductivity of Mg0.5Zr2(AsO4)x(PO4)3 – x,Inorg. Mater., 2018, vol. 54, no. 10, p. 1021.

    Article  Google Scholar 

  33. Sukhanov, M.V., Pet’kov, V.I., and Firsov, D.V., Sintering mechanism for high-density NZP ceramics, Inorg. Mater., 2011, vol. 47, no. 6, p. 674.

    Article  CAS  Google Scholar 

  34. Stenina, I.A., Pinus, I.Yu., Yaroslavtsev, A.B., Kislitsyn, M.N., Arkhangel’skii, I.V., and Zhuravlev, N.A., Phase transformations and cation  mobility in NASICON lithium zirconium double phosphates Li1 ± xZr2 – xMx(PO4)3 (M = Sc, Y, In, Nb, Ta), Russ. J. Inorg. Chem., 2005, vol. 50, no. 6, p. 906.

    Google Scholar 

  35. Stenina, I.A., Pinus, I.Yu., Rebrov, A.I., and Yaroslavtsev, A.B., Lithium and hydrogen ions transport in materials with NASICON structure, Solid State Ionics, 2004, vol. 175, p. 445.

    Article  CAS  Google Scholar 

  36. Song, W., Ji, X., Wu, Z., Zhu, Y., Yang, Y., Chen, J., Jing, M., Li, F., and Banks, C.E., First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3, J. Mater. Chem. A, 2014, vol. 2, p. 5358.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 18-29-12063. We used the equipment of Center for Collective Use of Physical Research Methods, Institute of General and Inorganic Chemistry, Russian Academy of Sciences. The Center is supported by the State assignment for Institute of General and Inorganic Chemistry, Russian Academy of Sciences in the field of fundamental research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Pet’kov or A. S. Shipilov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Kabanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pet’kov, V.I., Shipilov, A.S., Borovikova, E.Y. et al. Synthesis and Ionic Conductivity of NaZr2(AsO4)x(PO4)3 –x. Russ J Electrochem 55, 1034–1038 (2019). https://doi.org/10.1134/S1023193519100070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519100070

Keywords:

Navigation