Skip to main content
Log in

The Effect of the Nature of Cation on Transport Properties of Bis(trifluoromethylsulfonyl)imide Ionic Liquids

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The methods of viscosimetry, conductometry, densimetry, and differential scanning calorimetry are used for studying the physicochemical properties of cations (1-butyl-3-methylimidazolium [BuMeIm]+, N-butylmethylpyrrolidinium [BuMePyrr]+, and methytrioctylammonium [MeOc3Am]+) and their effect on the transport properties of bis(trifluoromethylsulfonyl)imide ionic liquids (IL). It is shown that ILs formed by cyclic amines ([BuMeIm]+ and [BuMePyrr]+) as the cations demonstrate the close values and temperature dependences of viscosity and conductivity. The cation [MeOc3Am]+ predetermines the difference in the IL structure and, thus, a substantial difference in the transport properties of the melt. For salts [BuMeIm][Tf2N], [BuMePyrr][Tf2N], and [MeOc3Am][Tf2N] at 293 К, the following transport characteristics are observed: viscosity 57.7, 88.1, and 726.5 mPa s; specific conductivity 0.376, 0.252, and 0.005 S m–1; activation energy of conductivity 21, 21, and 35 kJ mol–1; degree of “ionicity” 0.92, 0.94, and 1.00, respectively. Using the equation of Vogel–Fulcher–Tammann and based on the temperature dependences of specific conductivity and viscosity, the ideal glass transition temperatures are calculated for liquids under study. In the positive temperature range, a linear correlation is observed between the conductivity and the cation volume in these ionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Chiappe, C. and Pieraccini, D., Ionic liquids: solvent properties and organic reactivity, J. Phys. Org. Chem., 2005, vol. 18, p. 275.

    Article  CAS  Google Scholar 

  2. Galińnski, M., Lewandowski, and A., Stępniak, I., Ionic liquids as electrolytes, Electrochim. Acta, 2006, vol. 51, p. 5567.

    Article  CAS  Google Scholar 

  3. Hardacre, C., Holbrey, J.D., McMath, S.E.J., Bowron, D.T., and Soper, A.K., Structure of molten 1,3-dimethylimidazolium chloride using neutron diffraction, J. Chem. Phys., 2003, vol. 118, p. 273.

    Article  CAS  Google Scholar 

  4. Consorti, C.S., Suarez, P.A.Z., de Souza, R.F., Burrow, R.A., Farrar, D.H., Lough, A.J., Loh, W., de Silva, L.H.M., and Dupont, J., Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution, J. Phys. Chem. B., 2005, vol. 109, p. 4341.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, H., Current studies on some physical properties of ionic liquids. Review, Phys. Chem. Liq., 2003, vol. 41, p. 545.

    Article  CAS  Google Scholar 

  6. Appetecchi, G.B., Montanino, M., Zane, D., Carewska, M., Alessandrini, F., and Passerini, S., Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids, Electrochim. Acta, 2009, vol. 54, p. 1325.

    Article  CAS  Google Scholar 

  7. Vila, J., Varela, L.M., and Cabeza, O., Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids, Electrochim. Acta, 2007, vol. 52, p. 7413.

    Article  CAS  Google Scholar 

  8. Hawker, R.R., Haines, R.S., and Harper, J.B., Variation of the cation of ionic liquids: the effects on their physicochemical properties and reaction outcome, Targets Heterocycl. Syst., 2014, vol. 18, p. 141.

    CAS  Google Scholar 

  9. Pott, T. and Meleard, P., New insight into the nanostructure of ionic liquids: a small angle X-ray scattering (SAXS) study on liquid tri-alkyl-methyl-ammonium bis(trifluoromethanesulfonyl)amides and their mixtures, Phys. Chem. Chem. Phys., 2009, vol. 11, p. 5469.

    Article  CAS  PubMed  Google Scholar 

  10. Grishina, E.P., Kudryakova, N.O., Ramenskaya, L.M., and Fadeeva, Yu.A., The temperature effect on the transport properties of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, Russ. J. Phys. Chem. A, 2018, vol. 92, p. 724.

    Article  CAS  Google Scholar 

  11. Wasserscheid, P. and Welton, T., Ionic Liquids in Synthesis, Weinheim: Wiley-VCH, 2003.

    Google Scholar 

  12. Zhao, H., Are ionic liquids kosmotropic or chaotropic? An evaluation of available thermodynamic parameters for quantifying the ion kosmotropicity of ionic liquids, J. Chem Technol. Biotechnol., 2006, vol. 81, p. 877.

    Article  CAS  Google Scholar 

  13. Tomšík, E. and Gospodinova, N., Water in ionic liquids: Correlation between anion hydrophilicity and near-Infrared fingerprints, ChemPhysChem., 2016, vol. 17, p. 1586.

    Article  PubMed  CAS  Google Scholar 

  14. Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., and Rogers, R.D., Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chem., 2001, vol. 3, p. 156.

    Article  CAS  Google Scholar 

  15. Grishina, E.P., Pimenova, A.M., Ramenskaya, L.M., and Kraeva, O.V., Electrochemical properties of 1-butyl-3-methylimidazolium bromide melt containing water impurities, Russ. J. Electrochem., 2008, vol. 44, p. 1257.

    Article  CAS  Google Scholar 

  16. Ramenskaya, L.M., Grishina, E.P., Pimenova, A.M., and Gruzdev, M.S., The influence of water on the physicochemical characteristics of 1-butyl-3-methylimidazolium bromide ionic liquid, Russ. J. Phys. Chem. A., 2008, vol. 82, p. 1098.

    Article  CAS  Google Scholar 

  17. Grishina, E.P. and Kudryakova, N.O., Conductivity and electrochemical stability of concentrated aqueous choline chloride solutions, Russ. J. Phys. Chem. A, 2017, vol. 91, no. 10, p. 2024.

    Article  CAS  Google Scholar 

  18. O’Mahony, A.M., Silvester, D.S., Aldous, L., Hardacre, C., and Compton, R.G., Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids, J. Chem. Eng. Data, 2008, vol. 53, p. 2884.

    Article  CAS  Google Scholar 

  19. Salminen, J., Papaiconomou, N., Kumar, R.A., Lee, J.-M., Kerr, J., Newman, J., and Prausnitz, J.M., Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids, Fluid Phase Equilib., 2007, vol. 261, p. 421.

    Article  CAS  Google Scholar 

  20. Perissi, I., Caporali, S., Fossati, A., and Lavacchi, A., Corrosion resistance of metallic materials in ionic liquids, Adv. Chem. Res., 2011, vol. 6, p. 315.

    CAS  Google Scholar 

  21. Grishina, E.P., Pimenova, A.M., Borzova, E.V., Kudryakova, N.O., and Ramenskaya, L.M., Corrosion resistance of high-capacity aluminum foil in imidazole ionic liquids, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2014, no. 57, p.78.

  22. Köddermann, T., Wertz, C., Heintz, A., and Ludwig, R., Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentration, ChemPhysChem., 2006, vol. 7, p. 1944.

    Article  PubMed  CAS  Google Scholar 

  23. Best, A.S., Bhatt, A.I., and Hollenkamp, A.F., Ionic liquids with the bis(fluorosulfonyl)imide anion: electrochemical properties and applications in battery technology, J. Electrochem. Soc., 2010, vol. 157, p. A903.

    Article  CAS  Google Scholar 

  24. Appetecchi, G.B., Montanino, M., Carewska, M., Moreno, M., Alessandrini, F., and Passerini, S., Chemical-physical properties of bis(perfluoroalkylsulfonyl)imide-based ionic liquids, Electrochim. Acta, 2011, vol. 56, p. 1300.

    Article  CAS  Google Scholar 

  25. Deng, M.-J., Su, C.-J., Hsu, S.C.N., and Chen, P.-Y., The bis((trifluoromethyl)sulfonyl)imide-based room temperature ionic liquids used for several electrochemical applications, ECS Trans., 2007, vol. 3, p. 297.

    Article  CAS  Google Scholar 

  26. Bahadur, I., Osman, K., Coquelet, C., Naidoo, P., and Ramjugernath, D., Solubilities of carbon dioxide and oxygen in the ionic liquids methyltrioctylammonium bis(trifuoromethylsulfonyl) imide, 1-butyl-3-methylimidazolium bis(trifuoromethylsulfonyl) imide, and 1-butyl-3-methylmethyl sulphate, J. Phys. Chem. B., 2015, vol. 119, p. 1503.

    Article  CAS  PubMed  Google Scholar 

  27. Pratt, K.W., Koch, W.F., Wu, Y.C., and Berezansky, P.A., Molality-based primary standards of electrolytic conductivity (IUPAC Technical Report), Pure Appl. Chem., 2001, vol. 73, p. 1783.

    Article  CAS  Google Scholar 

  28. Tokuda, H., Ishii, K., Susan, M.A.B.H., Tsuzuki, S., Hayamizu, K., and Watanabe, M., Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures, J. Phys. Chem. B., 2006, vol. 110, p. 2833.

    Article  CAS  PubMed  Google Scholar 

  29. Xiao, D., Rajian, J.R., Cady, A., Li, S., Bartsch, R.A., and Quitevis, E.L., Nanostructural organization and anion effects on the temperature dependence of the optical Kerr effect spectra of ionic liquids, J. Phys. Chem. B, 2007, vol. 111, p. 4669.

    Article  CAS  PubMed  Google Scholar 

  30. Shirota, H., Funston, A.M., Wishart, J.F., and Castner, E.W., Ultrafast dynamics of pyrrolidinium cation ionic liquids, J. Chem. Phys., 2005, vol. 122, p. 184512.

    Article  PubMed  CAS  Google Scholar 

  31. Vraneš, M., Zec, N., Tot, A., Papović, S., Dožić, S., and Gadžurić, S., Density, electrical conductivity, viscosity and excess properties of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide + propylene carbonate binary mixtures, J. Chem. Thermodyn., 2014, vol. 68, p. 98.

    Article  CAS  Google Scholar 

  32. Troncoso, J., Cerdeirin, C.A., Sanmamed, Y.A., Romani, L., Paulo, L., and Robelo, N., Thermodynamic properties of imidazolium-based ionic liquids:  Densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2], J. Chem. Eng. Data, 2006, vol. 51, p. 1856.

    Article  CAS  Google Scholar 

  33. Gardas, R.L., Costa, H.F., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca, I.M. A., Ferreira, A.G.M., and Coutinho, J.A.P., Densities and derived thermodynamic properties of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ionic liquids, J. Chem. Eng. Data, 2008, vol. 53, p. 805.

    Article  CAS  Google Scholar 

  34. Froba, A. P., Kremer, H., and Leipertz, A., Density, refractive index, interfacial tension, and viscosity of ionic liquids [EMIM][EtSO4], [EMIM][NTf2], [EMIM][N(CN)2], and [OMA][NTf2] in dependence on temperature at atmospheric pressure, J. Phys. Chem. B, 2008, vol. 112, p. 12420.

    Article  PubMed  CAS  Google Scholar 

  35. Bonhôte, P., Dias, A.P., Papageorgiou, N., Kalya-nasundaram, K., and Grätzel, M., Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem., 1996, vol. 35, p. 1168.

    Article  PubMed  Google Scholar 

  36. Pan, Y., Boyd, L.E., Kruplak, J.F., Jr. Cleland, W.E., Wilkes, J.S., and Hussey, C.L., Physical and transport properties of bis(trifluoromethylsulfonyl)imide-based room-temperature ionic liquids: Application to the diffusion of tris(2,2′-bipyridyl)ruthenium(II), J. Electrochem. Soc., 2011, vol. 158, p. F1.

    Article  CAS  Google Scholar 

  37. Tokuda, H., Hayamizu, K., Ishii, K., Md. Abu Bin Hasan Susan, and Watanabe, M., Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation, J. Phys. Chem. B, 2005, vol. 109, p. 6103.

    Article  CAS  PubMed  Google Scholar 

  38. Gómez, E., Calvar, N., Macedo, and Dominguez, A., Effect of the temperature on the physical properties of pure 1-propyl 3-methylimidazolium bis(trifluoromethylsulfonyl)imide and characterization of its binary mixtures with alcohols, J. Chem. Thermodyn., 2012. vol. 45, p. 9.

    Article  CAS  Google Scholar 

  39. Every, H.A., Bishop, A.G., MacFarlane, D.R., Oradd, G., and Forsyth, M., Transport properties in a family of dialkylimidazolium ionic liquids, Phys. Chem. Chem. Phys., 2004, vol. 6, p. 1758.

    Article  CAS  Google Scholar 

  40. Xu, W., Cooper, E.I., and Angell, C.A., Ionic liquids: ion mobilities, glass temperatures, and fragilities, J. Phys. Chem. B., 2003, vol. 107, p. 6170.

    Article  CAS  Google Scholar 

  41. Lopes, J.N.A.C. and Pádua, A.A.H., Nanostructural organization in ionic liquids, J. Phys. Chem. B., 2006, vol. 110, p. 3330.

    Article  CAS  Google Scholar 

  42. Dong, K., Zhang, S., and Wang, J., Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions, Chem. Commun., 2016, vol. 52, p. 6744.

    Article  CAS  Google Scholar 

  43. Fumino, K., Wulf, A., and Ludwig, R., Strong, Localized, and directional hydrogen bonds fluidize ionic liquids, Angew. Chem., Int. Ed., 2008, vol. 47, p. 8731.

    Article  CAS  Google Scholar 

  44. Delimarskii, Yu.K., Elektrokhimiya of ionnykh rasplavov (Electrochemistry Ionic Melts), Moscow: Metallurgiya, 1978.

Download references

ACKNOWLEDGMENTS

The densimetry studies were carried on the equipment (densimeter Anton Paar DMA 4500, Austria) of the Center of Joint Use of Scientific Equipment “The Upper Volga Region Center of Physicochemical Research.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. P. Grishina or N. O. Kudryakova.

Ethics declarations

FUNDING

This study was supported by the State Program of the Ministry of Education and Science of Russia (grant no. 01201260481.

CONFLICT OF INTERESTS

The authors state that they have no conflict of interests.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishina, E.P., Kudryakova, N.O., Ramenskaya, L.M. et al. The Effect of the Nature of Cation on Transport Properties of Bis(trifluoromethylsulfonyl)imide Ionic Liquids. Russ J Electrochem 55, 970–977 (2019). https://doi.org/10.1134/S1023193519100057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519100057

Keywords:

Navigation