Skip to main content
Log in

Effect of the Doping Anion Replacement on the Polyaniline Electrochemical Behavior

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Samples of polyaniline synthesized from aniline sulfate were electrochemically cycled in LiCl, LiClO4, and lithium tetracyanoquinodimethane, with the electrolyte replacement. In all studied cases, the polyaniline is shown to retain its electrochemical activity upon the electrolyte and doping anion replacement. The electrochemical activity with the Cl and \({\text{ClO}}_{4}^{ - },\) dopants is reduced in the first cycles upon the electrolyte replacement; however, in the subsequent cycles the reduction decreased. When the electrode under testing has been returned to the native electrolyte, its electrochemical activity and electrochemical capacitance increased, recovering their initial values. When polyaniline has been doped with the tetracyanoquinodimethane anion, each next cycling series revealed an increase in its electrochemical activity, which manifests itself in the cyclic voltammogram area, as well as increase in the electrochemical capacitance from one cycling series to the next one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Abdullin, T.I., Nikitina, I.I., Evtugin, G.A., Budnikov, G.K., and Manapova, L.Z., Electrochemical properties of a two-component DNA-polyaniline film at the surface of glassy carbon electrode, Russ. J. Electrochem., 2007, vol. 41, p. 1284.

    Article  Google Scholar 

  2. Sun, L., Liu, H., Clark, R., and Yang, S.C., Double-Strand polyaniline, Synth. Met., 1997, vol. 84, p. 67.

    Article  CAS  Google Scholar 

  3. Liu, W., Anagnostopoulos, A., Bruno, F.F., Senecal, K., Kumar, J., Tripathy, S., and Samuelson, L., Biologically derived water soluble conducting polyaniline, Synth.Met., 1999, vol. 101, p. 738.

    Article  CAS  Google Scholar 

  4. Kausaite, A. and Ramanaviciene, A., polyaniline synthesis catalysed by glucose oxidase, Polymer, 2009, vol. 50, no. 8, p. 1846.

    Article  CAS  Google Scholar 

  5. Yano, J., Electrochromism of polyaniline Film Incorporating a Red Quinone 1-Amino 4-bromoanthraquinone 2-sulfonate, J. Electrochem. Soc., 1997, vol. 144, p. 477.

    Article  CAS  Google Scholar 

  6. Ohtsuka, T., Wakabayashi, T., and Einaga, H., Optical characterization of polypyrrole-polytungstate anion composite films, Synth.Met., 1996, vol. 79, p. 235.

    Article  CAS  Google Scholar 

  7. Sung, H. and Paik, W.K., Polypyrrole doped with heteropolytungstate anions, Electrochim. Acta., 1994, vol. 39, p. 645.

    Article  CAS  Google Scholar 

  8. Reinolds, J.R., Pyo, M., and Qin, Y.J., Charge and Ion Transport in Poly(pyrrole copper phthalocyanine tetrasulfonate) during Redox Switching, Electrochem. Soc., 1994, vol. 141, p. 35.

    Article  Google Scholar 

  9. Tolgyesi, M., Szues, A. Visy, C., and Novak, M., Redox anion doped polypyrolle films; electrochemical behaviour of polypyrrole prepared in Fe(CN)6, Electrochim. Acta, 1995, vol. 40, p. 1127.

    Article  CAS  Google Scholar 

  10. Mazeikiene, R. and Malinauskas, A., Doping of polyaniline by some redox active organic anions, Europ. Polymer J., 2000, vol. 36, p. 1347.

    Article  CAS  Google Scholar 

  11. Abalyaeva, V.V. and Efimov, O.N., Synthesis and electrochemical behavior of polyaniline doped by electroactive anions, Russ. J. Electrochem., 2011, vol. 47, p. 1299.

    Article  CAS  Google Scholar 

  12. Abalyaeva, V.V. and Efimov, O.N., Regularities of electrochemical behavior of polyaniline doped by electroactive anions, Russ. J. Electrochem., 2011, vol. 47, p. 1307.

    Article  CAS  Google Scholar 

  13. Abalyaeva, V.V., Kulikov, A.V., and Efimov, O.N., The aniline complex with the chloromidate anion as a catalyst for the electrochemical synthesis of polyaniline, High-molecular Compounds, 1997, vol. 39, p. 216.

    CAS  Google Scholar 

  14. Berman, S.S., Beamish, F.E., and Mcbry de W.A.E., The colorimetric determination of iridium by O-dianisidine, Analyt. Chim. Acta, 1956, vol. 15, p. 363.

    Article  CAS  Google Scholar 

  15. Yang, H. and Bard, A.J., The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions, J. Electroanalyt. Chem., 1992, vol. 339, nos. 1–2, p. 423.

    Article  CAS  Google Scholar 

  16. Shim, Y-B., Won, M-S., and Park, S-M., Spectroelectrochemical Studies of polyaniline Growth Mechanisms, Electrochem. Soc., 1990, vol. 137, no. 2, p. 538.

    Article  CAS  Google Scholar 

  17. Wang, Z.H., Li, C., Scherr, E.M., MacDiarmid, A.G., and Epstein, A.J., Three Dimensionality of “Metallic” States in Conducting Polymers: polyaniline, Phys. Rev. Letters, 1991, vol. 66, no. 13, p. 1745.

    Article  CAS  Google Scholar 

  18. Melby, L.R., Harder, R.J., Hertler, W.R., Manler, W., Benson, R.E., and Mochel, W.E., Substituted Quinodimethans. II. Anion-radical Derivatives and Complexes of 7,7,8,8-Tetracyanoquinodimethane, J. Am. Chem. Soc., 1962, vol. 84, p. 3374.

    Article  CAS  Google Scholar 

  19. Dominis, A.J., Spinks, G.M., Kane-Maguire, L.A.P., and Wallace, G.G., A de-doping/re-doping study of organic soluble polyaniline, Synth. Met., 2002, vol. 129, no. 2, p. 165.

    Article  CAS  Google Scholar 

  20. Abd-Elwahed, A. and Holze, R. Ion size and size memory effects with electropolymerized polyaniline, Synth. Met., 2002, vol. 131, p. 61.

    Article  CAS  Google Scholar 

  21. Abd-Elwahed A. and Holze, R., In situ Near-Infrared Spectroelectrochemical Investigation of Redox States of polyaniline during Growth and Doping, Russ. J. Electrochem., 2003, vol. 39, p. 391.

    Article  CAS  Google Scholar 

  22. Nekrasov, A.A., Ivanov, V.F., Gribkova, O.I., and Vannikov, A.V., Voltabsorptometric study of “structural memory” effects in polyaniline, Electrochim. Acta, 2005, vol. 50, p. 1605.

    Article  CAS  Google Scholar 

  23. Abalyaeva, V.V. and Dremova, N.N., Electrochemical doping of polyaniline with the tetracyanoquinodimethane anion, Russ. J. Electrochem., 2016, vol. 52, p. 746.

    Article  CAS  Google Scholar 

  24. Starodub, V.A. and Starodub, T.N., Anion-radical salts and charge-transfer complexes based on tetracyanoquinodimethane and other strong π-electron acceptors, Adv. in Chem., 2014, vol. 83, p. 391.

    Google Scholar 

  25. Hatchett, D.W., Josowicz, M., and Janata, J., Acid Doping of polyaniline: Spectroscopic and Electrochemical Studies, J. Phys. Chem. B., 1999, vol. 103, p. 10992.

    Article  CAS  Google Scholar 

  26. Zeng, X.-R. and Ko, T.-M., Structures and properties of chemically reduced polyanilines, Polymer, 1998, vol. 39, p. 1187.

    Article  CAS  Google Scholar 

  27. Wey, Y., Hsueh, K.F., and Jang, G-W., A study of leucoemeraldine and effect of redox reactions on molecular weight of chemically prepared polyaniline, Macromolecules, 1994, vol. 27, p. 518.

    Article  Google Scholar 

  28. Bhadra, S., Khastgir, D., Singha, N.K., and Lee, J.H., Progress in preparation, processing and applications of polyaniline,Prog. Polym. Sci., 2009, vol. 34, p. 783.

    Article  CAS  Google Scholar 

  29. Abdiryim, T., Xiao-Gang, Z., and Jamal, R.J., Synthesis and characterization of poly(o-toluidine) doped with organic sulfonic acid by solid-state polymerization, Appl. Polym. Sci., 2005, vol. 96, p. 1630.

    Article  CAS  Google Scholar 

  30. Lizarraga, L., Andrade, E.M., and Molina1, F.V., Anion exchange influence on the electrochemomechanical properties of polyaniline, Electrochim. Acta, 2007, vol. 53, p. 538.

    Article  CAS  Google Scholar 

  31. Zaidi, N.A., Giblin, S.R., Terri, I., and Monkman, A.P., Room temperature magnetic order in an organic magnet derived from polyaniline, Polymer, 2004, vol. 45, p. 5683.

    Article  CAS  Google Scholar 

  32. Martin, R. Bryce, M.R., Lay, A.K., Chesney, A., Batsanov, A.,S., Gerson, A., and Merstetter, P., The X-ray crystal structures of 8,9-bis(methylsulfanyl)-acenaphtho[1,2-b][1,4]dithiine and its complexes with 7,7,8,8- tetracyano-p-quinodimethane (TCNQ), 2,5-dibromo-TCNQ and iodine, J. Chem. Soc., Perkin Trans., 1999, vol. 2, p. 755.

    Google Scholar 

  33. Bigoli, F., Deplano, P., Devillanova, F.A., Girlando, A., Lippolis, V., Mercuri, M.-L., Pellinghellia, M.-A., and Troguc, E.-F., New semiconductors obtained by reaction of 4-imidazolline-2-selone derivatives with TCNQ. Characterization and X-ray structure of (C9H12N4Se)2+ \(\left( {{\text{TCNQ}}} \right)_{3}^{{2 - }},\)J. Mater. Chem., 1998, vol. 8(5), p. 1145.

    Article  CAS  Google Scholar 

Download references

Funding

This study is carried out in frames of the State task, the State Registration nos. 0089-2019-0010 and 0089-2014-0022 (Institute of Problems of Chemical Physics, RAS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Abalyaeva or O. N. Efimov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abalyaeva, V.V., Efimov, O.N. Effect of the Doping Anion Replacement on the Polyaniline Electrochemical Behavior. Russ J Electrochem 55, 953–961 (2019). https://doi.org/10.1134/S1023193519100021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519100021

Keywords:

Navigation