Skip to main content

Advertisement

Log in

Cementitious property of NaAlO2-activated Ge slag as cement supplement

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Germanium (Ge), a waste residue leaching from zinc (Zn) smelting process, has potential cementitious properties and could be recycled as a cement supplement activated by chemical reagents. In this work, a test was conducted to determine the hydration properties of Ge slag-cement-based composites with Ge slag (GS)/ordinary Portland cement (PC) contents of 0wt%, 5wt%, 10wt%, 15wt%, 20wt%, and 25wt% and water-to-binder ratio (w/b) of 0.4. The activators Ca(OH)2, AlCl3, NaAlO2, and Na2CO3 were mixed under 1wt%, 2wt%, 3wt%, and 4wt% dosages of GS weight. The composition and microstructure of the hydration products were investigated by the combined approaches of X-ray diffraction (XRD), thermogravimetry–differential scanning calorimetry (TG-DSC), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). First, the GS cementitious property is attributed to the high content of CaSO4•2H2O. Second, the activators affected the acceleration performance in the following order: NaAlO2, Na2CO3, AlCl3, and Ca(OH)2. More importantly, the 28-day unconfined compressive strength (UCS) is 45.34 MPa at the optimum formula of 0.6wt% NaAlO2, 15wt% GS, and 85wt% PC, which is 9.16% higher than the control. Thus, NaAlO2 is beneficial for the ettringite (AFt) generation, resulting in the C–S–H structure compaction. However, the Zn2+ residue inhibited the AFt formation, representing an important challenge to the strength growth with curing age. Consequently, the GS could be recycled as a supplement to the cement under the activator NaAlO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.R. Moskalyk, Review of germanium processing world-wide, Miner. Eng., 17 (2004), No. 3, p. 393.

    Article  CAS  Google Scholar 

  2. D. Filippou, Innovative hydrometallurgical processes for the primary processing of zinc, Miner. Process. Extr. Metall. Rev., 25 (2004), No. 3, p. 205.

    Article  CAS  Google Scholar 

  3. H.J. Lu, C.C. Qi, C.H. Li, D.Q. Gan, Y.N. Du, and S. Li, A light barricade for tailings recycling as cemented paste backfill, J. Cleaner Prod., 2019, art. No. 119388.

    Google Scholar 

  4. D. Wu, Y. Zhang, and C. Wang, Modeling the thermal response of hydrating cemented gangue backfill with admixture of fly ash, Thermochim. Acta, 623(2016), p. 86.

    Article  CAS  Google Scholar 

  5. Q. Sun, S. Tian, Q.W. Sun, B. Li, C. Cai, Y.J. Xia, and Q.W. Mu, Preparation and microstructure of fly ash geopolymer paste backfill material, J. Cleaner Prod., 225(2019), p. 376.

    Article  CAS  Google Scholar 

  6. V.Z. Serjun, A. Mladenovič, B. Mirtič, A. Meden, J. Ščančar, and R. Milačič, Recycling of ladle slag in cement composites: environmental impacts, Waste Manage., 43(2015), p. 376.

    Article  CAS  Google Scholar 

  7. S. Cao, E. Yilmaz, and W.D. Song, Dynamic response of cement-tailings matrix composites under SHPB compression load, Constr. Build. Mater., 186 (2018), p. 892.

    Article  CAS  Google Scholar 

  8. C.C. Qi, L. Liu, J.Y. He, Q.S. Chen, L.J. Yu, and P.F. Liu, Understanding cement hydration of cemented paste backfill: DFT study of water adsorption on tricalcium silicate (111) surface, Minerals, 9 (2019), No. 4, p. 202.

    Article  Google Scholar 

  9. M.S. Kirgiz, Advance treatment by nanographite for portland pulverised fly ash cement (the class F) systems, Composites Part B, 82(2015), p. 59.

    Article  CAS  Google Scholar 

  10. N. Lushnikova and L. Dvorkin, Sustainability of gypsum products as a construction material, Sustainability Constr. Mater., 2016, p. 643.

    Chapter  Google Scholar 

  11. M.S. Kirgiz, Advancements in mechanical and physical properties for marble powder–cement composites strengthened by nanostructured graphite particles, Mech. Mater., 92(2016), p. 223.

    Article  Google Scholar 

  12. L.Q. Qi, J.X. Liu, and Q. Liu, Compound effect of CaCO3 and CaSO4•2H2O on the strength of steel slag-cement binding materials, Mater. Res., 19 (2016), No. 2, p. 269.

    Article  CAS  Google Scholar 

  13. A. Mardani-Aghabaglou, O.C. Boyacı, H. Hosseinnezhad, B. Felekoğlu, and K. Ramyar, Effect of gypsum type on properties of cementitious materials containing high range water reducing admixture, Cem. Concr. Compos., 68(2016), p. 15.

    Article  CAS  Google Scholar 

  14. C.C. Qi, A. Fourie, Q.S. Chen, and P.F. Liu, Application of first-principles theory in ferrite phases of cemented paste backfill, Miner. Eng., 133(2019), p. 47.

    Article  CAS  Google Scholar 

  15. H.Y. Cheng, S.C. Wu, H. Li, and X.Q. Zhang, Influence of time and temperature on rheology and flow performance of cemented paste backfill, Constr. Build. Mater., 231 (2020), art. No. 117117.

    Article  Google Scholar 

  16. T. Phoo-ngernkham, P. Chindaprasirt, V. Sata, S. Pangdaeng, and T. Sinsiri, Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive, Int. J. Miner. Metall. Mater., 20 (2013), No. 2, p. 214.

    Article  CAS  Google Scholar 

  17. X. Gao, Q.L. Yu, and H.J.H. Brouwers, Properties of alkali activated slag–fly ash blends with limestone addition, Cem. Concr. Compos., 59(2015), p. 119.

    Article  CAS  Google Scholar 

  18. F. Han, S. Song, J. Liu, and S. Huang, Properties of steam-cured precast concrete containing iron tailing powder, Powder Technol., 345(2019), p. 292.

    Article  CAS  Google Scholar 

  19. N. De Belie, C.U. Grosse, J. Kurz, and H.W. Reinhardt, Ultrasound monitoring of the influence of different accelerating admixtures and cement types for shotcrete on setting and hardening behaviour, Cem. Concr. Res., 35(2005), No. 11, p. 2087.

  20. P. Li, Y.B. Hou, and M.F. Cai, Factors influencing the pum-pability of unclassified tailings slurry and its interval division, Int. J. Miner. Metall. Mater., 26 (2019), No. 4, p. 417.

    Article  Google Scholar 

  21. Qi. Sun, S. Tian. Q.W. Sun, B. Li, C. Cai, Y.J., Xia. X. Wei, and Q.W. Mu, Preparation and microstructure of fly ash geopolymer paste backfill material, J. Cleaner Prod., 225(2019), p. 376.

    Article  CAS  Google Scholar 

  22. M.S. Kirgiz, Effects of blended-cement paste chemical composition changes on some strength gains of blended-mortars, Sci. World J., 2014, art. No. 625350.

    Google Scholar 

  23. Y. Wang, M. Fall, A.X. Wu, Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate, Cem. Concr. Compos., 67(2016), p. 101.

    Article  CAS  Google Scholar 

  24. S.W. Lee, Y.J. Kim, J.H. Bang, and S. Chae, CaCO3 film synthesis from ladle furnace slag: morphological change, new material properties, and Ca extraction efficiency, Int. J. Miner. Metall. Mater., 25 (2018), No. 12, p. 1447.

    Article  CAS  Google Scholar 

  25. A. Nmiri, M. Duc, N. Hamdi, O. Yazoghli-Marzouk, and E. Srasra, Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers, Int. J. Miner. Metall. Mater., 26 (2019), No. 5, p. 555.

    Article  CAS  Google Scholar 

  26. C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025.

    Article  CAS  Google Scholar 

  27. P. Garcés, M.P. Carrión, E. García-Alcocel, J. Payá, J. Monzó, and M.V. Borrachero, Mechanical and physical properties of cement blended with sewage sludge ash, Waste Manage., 28 (2008), No. 12, p. 2495.

    Article  CAS  Google Scholar 

  28. Y.B. Dong, H. Li, H. Lin, and Y. Zhang, Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction, Int. J. Miner. Metall. Mater, 24 (2017), No. 4, p. 369.

    Article  CAS  Google Scholar 

  29. Q.S. Chen, Q.L. Zhang, C.C. Qi, A. Fourie, and C.C. Xiao, Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact, J. Cleaner Prod., 186(2018), p. 418.

    Article  CAS  Google Scholar 

  30. M.S. Kirgiz, Chemical properties of blended cement pastes, J. Constr. Eng. Manage., 137 (2011), No. 12, p. 1036.

    Article  Google Scholar 

  31. L. Liu, Z.Y. Fang, C.C. Qi, B. Zhang, L. Guo, and K.I. Song, Experimental investigation on the relationship between pore characteristics and unconfined compressive strength of cemented paste backfill, Constr. Build. Mater., 179(2018), p. 254.

    Article  Google Scholar 

  32. S. Mostaghel, C. Samuelsson, and B. Björkman, Influence of alumina on mineralogy and environmental properties of zinc-copper smelting slags, Int. J. Miner. Metall. Mater., 20 (2013), No. 3, p. 234.

    Article  CAS  Google Scholar 

  33. X.T. Zhou, X.T. Hao, Q.M. Ma, Z.Q. Luo, M.Q. Zhang, and J.H. Peng, Effects of compound chemical activators on the hydration of low-carbon ferrochrome slag-based composite cement, J. Environ. Manage., 191(2017), p. 58.

    Article  CAS  Google Scholar 

  34. H.Z. Jiao, S.F. Wang, Y.X. Yang, and X.M. Chen, Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill, J. Cleaner Prod., 2019, art. No. 118882.

  35. N. Gineys, G. Aouad, and D. Damidot, Managing trace elements in Portland cement–Part II: Comparison of two methods to incorporate Zn in a cement, Cem. Concr. Compos., 33 (2011), No. 6, p. 629.

    Article  CAS  Google Scholar 

  36. F. Amor, A. Diouri, I. Ellouzi, and F. Ouanji, Development of Zn-Al-Ti mixed oxides-modified cement phases for surface photocatalytic performance, Case Stud. Constr. Mater., 9(2018), p. e00209.

    Google Scholar 

  37. N. Gineys, G. Aouad, and D. Damidot, Managing trace elements in Portland cement–Part I: Interactions between cement paste and heavy metals added during mixing as soluble salts, Cem. Concr. Compos., 32(2010), No. 8, p. 563.

    Article  CAS  Google Scholar 

  38. H.J. Lu, C.C. Qi, Q.S. Chen, D.Q. Gan, Z.L. Xue, and Y.J. Hu, A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits, J. Cleaner Prod., 188(2018), p. 601.

    Article  Google Scholar 

  39. Y.D. Huang, Q. Wang, and M.X. Shi, Characteristics and reactivity of ferronickel slag powder, Constr. Build. Mater., 156(2017), p. 773.

    Article  CAS  Google Scholar 

  40. N.R. Rakhimova and R.Z. Rakhimov, Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste, Mater. Des., 85(2015), p. 324.

    Article  CAS  Google Scholar 

  41. F.A. Memon, M.F. Nuruddin, and N. Shafiq, Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete, Int. J. Miner. Metall. Mater., 20 (2013), No. 2, p. 205.

    Article  CAS  Google Scholar 

  42. Z. Liu, N.N. Shao, T.Y. Huang, J.F. Qin, D.M. Wang, and Y. Yang, Effect of SiO2/Na2O mole ratio on the properties of foam geopolymers fabricated from circulating fluidized bed fly ash, Int. J. Miner. Metall. Mater., 21 (2014), No. 6, p. 620.

    Article  CAS  Google Scholar 

  43. L. Assi, S.A. Ghahari, E.E. Deaver, D. Leaphart, and P. Ziehl, Improvement of the early and final compressive strength of fly ash-based geopolymer concrete at ambient conditions, Constr. Build. Mater., 123(2016), p. 806.

    Article  CAS  Google Scholar 

  44. J.V. Temuujin, A.V. Riessen, and R. Williams, Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes, J. Hazard. Mater., 167 (2009), No. 1–3, p. 82.

    Article  CAS  Google Scholar 

  45. P. Chindaprasirt, T. Phoongernkham, S. Hanjitsuwan, S. Horpibulsuk, A. Poowancum, and B. Injorhor, Effect of calcium-rich compounds on setting time and strength development of alkali-activated fly ash cured at ambient temperature, Case Stud. Constr. Mater., 9(2018), p. e00198.

    Google Scholar 

  46. M.D. Andersen, H.J. Jakobsen, and J. Skibsted, Characterization of white Portland cement hydration and the CSH structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy, Cem. Concr. Res., 34 (2004), No. 5, p. 857.

    Article  CAS  Google Scholar 

  47. J.W. Phair and J.S.J. van Deventer, Characterization of flyash-based geopolymeric binders activated with sodium aluminate, Ind. Eng. Chem. Res., 41 (2002), No. 17, p. 4242.

    Article  CAS  Google Scholar 

  48. T. Kim, I.T. Kim, K.Y. Seo, and H.J. Park, Strength and pore characteristics of OPC-slag cement paste mixed with polya-luminum chloride, Constr. Build. Mater., 223(2019), p. 616.

    Article  CAS  Google Scholar 

  49. W. Chen, B. Li, Q. Li, and J. Tian, Effect of polyaluminum chloride on the properties and hydration of slag-cement paste, Constr. Build. Mater., 124(2016), p. 1019.

    Article  CAS  Google Scholar 

  50. A.F. Abdalqader, F. Jin, and A. Al-Tabbaa, Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures, J. Cleaner Prod., 113(2016), p. 66.

    Article  CAS  Google Scholar 

  51. B. Yuan, Q.L. Yu, and H.J.H. Brouwers, Reaction kinetics, reaction products and compressive strength of ternary activators activated slag designed by Taguchi method, Mater. Des., 86(2015), p. 878.

    Article  CAS  Google Scholar 

  52. K. Ellis, R. Silvestrini, B. Varela, N. Alharbi, and R. Hailstone, Modeling setting time and compressive strength in sodium carbonate activated blast furnace slag mortars using statistical mixture design, Cem. Concr. Compos., 74(2016), p. 1.

    Article  CAS  Google Scholar 

  53. R. Ragoug, O.O. Metalssi, F. Barberon, J.M. Torrenti, N. Roussel, L. Divet, and J.B.D.E. de Lacaillerie, Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects, Cem. Concr. Res., 116(2019), p. 134.

    Article  CAS  Google Scholar 

  54. Y. Gu, R.P. Martin, O.O. Metalssi, T. Fen-Chong, and P. Dangla, Pore size analyses of cement paste exposed to external sulfate attack and delayed ettringite formation, Cem. Concr. Res., 123(2019), art. No. 105766.

    Article  CAS  Google Scholar 

  55. İ. Demir and Ö. Sevim, Effect of sulfate on cement mortars containing Li2SO4, LiNO3, Li2CO3 and LiBr, Constr. Build. Mater., 156(2017), p. 46.

    Article  CAS  Google Scholar 

  56. M. Zajac, J. Skocek, A. Müller, and M.B. Haha, Effect of sulfate content on the porosity distribution and resulting performance of composite cements, Constr. Build. Mater., 186 (2018), p. 912.

    Article  CAS  Google Scholar 

  57. İ. Demir, S. Güzelkücük, and Ö. Sevim, Effects of sulfate on cement mortar with hybrid pozzolan substitution, Eng. Sci. Technol., 21 (2018), No. 3, p. 275.

    Google Scholar 

  58. C.C. Qi, X.L. Tang, X.J. Dong, Q.S. Chen, A. Fourie, and E.Y Liu, Towards intelligent mining for backfill: A genetic programming-based method for strength forecasting of cemented paste backfill, Miner. Eng., 133(2019), p. 69.

    Article  CAS  Google Scholar 

  59. H.Z. Jiao, Y.C. Wu, X.M. Chen, and Y.X. Yang, Flexural toughness of basalt fibre-reinforced shotcrete and industrial-scale testing, Adv. Mater. Sci. Eng., 2019, art. No. 6568057.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51701094, 51834001, and 51574013), the key projects for the prevention and control of major accidents in safety production, China (No. Henan-0005–2016AQ), and the Plan for Scientific Innovation Talent of Henan Province (No. 194200510010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-ming Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Hz., Wang, Sf., Wu, Ax. et al. Cementitious property of NaAlO2-activated Ge slag as cement supplement. Int J Miner Metall Mater 26, 1594–1603 (2019). https://doi.org/10.1007/s12613-019-1901-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1901-y

Keywords

Navigation