Skip to main content

Advertisement

Log in

The mechanism and products for co-thermal extraction of biomass and low-rank coal with NMP

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The high-value utilization of low-rank coal would allow for expanding energy sources, improving energy efficiencies, and alleviating environmental issues. In order to use low-rank coal effectively, the hypercoals (HPCs) were co-extracted from two types of low-rank coal and biomass via N-methyl-2-purrolidinone (NMP) under mild conditions. The structures of the HPCs and residues were characterized by proximate and ultimate analysis, Raman spectra, and Fourier transform infrared (FT-IR) spectra. The carbon structure changes within the raw coals and HPCs were discussed. The individual thermal dissolution of Xibu (XB) coal, Guandi (GD) coal, and the biomass demonstrated that the biomass provided the lowest thermal dissolution yield Y1 and the highest thermal soluble yield Y2 at 280°C, and the ash content of three HPCs decreased as the extraction temperature rose. Co-thermal extractions in NMP at various coal/biomass mass ratios were performed, demonstrating a positive synergic effect for Y2 in the whole coal/biomass mass ratios. The maximum value of Y2 was 52.25wt% for XB coal obtained with a XB coal/biomass of 50wt% biomass. The maximum value of Y2 was 50.77wt% for GD coal obtained with a GD coal/biomass of 1:4. The difference for the optimal coal/biomass mass ratios between XB and GD coals could be attributed to the different co-extraction mechanisms for this two type coals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.Y. Liu, S.D. Shi, and Y.W. Li, Coal liquefaction technologies— Development in China and challenges in chemical reaction engineering, Chem. Eng. Sci., 65(2010), No. 1, p. 12.

    Article  CAS  Google Scholar 

  2. B. Dudley, BP Statistical Review of World Energy, BP Brazil, London, UK [2019-6-11]. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/news-and-insights/speeches/bp-stats-review-2019-bob-dudley-speech.pdf

  3. T. Ariyama and M. Sato, Optimization of ironmaking process for reducing CO2 emissions in the integrated steel works, ISIJ Int., 46(2006), No. 12, p. 1736.

    Article  CAS  Google Scholar 

  4. H.F. Shui, W. Zhao, C. Shan, T. Shui, C. Pan, Z. Wang, Z. Lei, S. Ren, and S. Kang, Caking and coking properties of the thermal dissolution soluble fraction of a fat coal. Fuel Process. Technol., 118(2014), p. 64.

    Article  CAS  Google Scholar 

  5. N. Okuyama, N. Komatsu, T. Shigehisa, T. Kaneko, and S. Tsuruya, Hyper-coal process to produce the ash-free coal, Fuel Process. Technol., 85(2004), No. 8-10, p. 947.

    Article  CAS  Google Scholar 

  6. Y. Mochizuki and K. Sugawara, Removal of organic sulfur from hydrocarbon resources using ionic liquids, Energy Fuels, 22(2008), No. 5, p. 3303.

    Article  CAS  Google Scholar 

  7. H. Ran and J.H. Li, Current situation and development of agricultural waste resources and biomass energy utilization in rural areas, Energy Conserv. Environ. Prot., (2019), No. 6, p. 75.

    Google Scholar 

  8. X.Y. Zha, A review of biomass energy utilization technology. Gansu Agric.2014, No. 1, p. 30.

    Google Scholar 

  9. Z.S. Wei, H.J.Y. Niu and Y.F. Ji, Simultaneous removal of SO2 and NOx by microwave with potassium permanganate over zeolite. Fuel Process. Technol., 90(2009), No. 2, p. 324.

    Article  CAS  Google Scholar 

  10. Y. Cao, B. Casenas, and W.P. Pan, Investigation of chemical looping combustion by solid fuels. 2. Redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier, Energy Fuels, 20(2006), No. 5, p. 1845.

    Article  CAS  Google Scholar 

  11. H.F. Shui, Z. Hui, Q.Q. Jiang, H. Zhou, C.X. Pan, Z.C. Wang, Z.P. Lei, S.B. Ren, and S.G. Kang, Co-thermal dissolution of Shenmu–Fugu subbituminous coal and sawdust, Fuel Process. Technol., 131(2015), p. 87.

    Article  CAS  Google Scholar 

  12. H.F. Shui, X.Q. Ma, L. Yang, T. Shui, C.X. Pan, Z.C. Wang, Z.P. Lei, S.B. Ren, S.G. Kang, and C.C. Xu, Thermolysis of biomass-related model compounds and its promotion on the thermal dissolution of coal, J. Energy Inst., 90(2017), No. 3, p. 418.

    Article  CAS  Google Scholar 

  13. Z. Hua, Q.Q. Jiang, C.X. Pan, H.F. Shui, Z.P. Lei, and Z.C. Wang, Co-thermal dissolution property of Shenfu coal and rice straw, J. Fuel Chem. Technol., 42(2014), No. 1, p. 1.

    Article  Google Scholar 

  14. T. Cordero, J. Rodrı́guez-Mirasol, J. Pastrana, and J.J. Rodrı́guez, Improved solid fuels from co-pyrolysis of a high-sulphur content coal and different lignocellulosic wastes, Fuel, 83(2004), No. 11–12, p. 1585.

    Article  CAS  Google Scholar 

  15. S. D. Kim, K.J. Woo, S.K. Jeong, Y.J. Rhim, and S.H. Lee, Production of low ash coal by thermal extraction with N-methyl-2-pyrrolidinone, Korean J. Chem. Eng., 25(2008), No. 4, p. 758.

    Article  CAS  Google Scholar 

  16. H.F. Shui, Y. Zhou, H.P. Li, Z. Wang, Z.C. Lei, S.B. Ren, C.X. Pan, and W.W. Wang, Thermal dissolution of Shenfu coal in different solvents, Fuel, 108(2013), p. 385.

    Article  CAS  Google Scholar 

  17. C.Q. Li, S. Ashida, M. Iino, and T. Takanohashi, Coal dissolution by heat treatments in N-methyl-2-pyrrolidinone, 1,4,5,8,9,10-hexahydroanthracene, and their mixed solvents: A large synergistic effect of the mixed solvents, Energy Fuels, 14(2000), No. 1, p. 190.

    Article  CAS  Google Scholar 

  18. H.F. Shui, Effect of coal extracted with NMP on its aggregation, Fuel, 84(2005), No. 7–8, p. 939.

    Article  CAS  Google Scholar 

  19. T. Ishizuka, T. Takanohashi, O. Ito, and M. Iino, Effects of additives and oxygen on extraction yield with CS2-NMP mixed solvent for argonne premium coal samples, Fuel, 72(1993), No. 4, p. 579.

    Article  CAS  Google Scholar 

  20. T. Yoshida, T. Takanohashi, K. Sakanishi, I. Saito, M. Fujita, and K. Mashimo, The effect of extraction condition on ‘HyperCoal’ production (1)—under room-temperature filtration, Fuel, 81(2002), No. 11–12, p. 1463.

    Article  CAS  Google Scholar 

  21. J.N. Pan, M.M. Lv, H.L. Bai, Q.L. Hou, M. Li, and Z.Z. Wang, Effects of metamorphism and deformation on the coal macromolecular structure by laser Raman spectroscopy, Energy Fuels, 31(2017), No. 2, p. 1136.

    Article  CAS  Google Scholar 

  22. D. Wu, B.Y. Chen, R.Y. Sun, and G.J. Liu, Thermal behavior and Raman spectral characteristics of step-heating perhydrous coal: Implications for thermal maturity process, J. Anal. Appl. Pyrolysis, 128(2017), p. 143.

    Article  CAS  Google Scholar 

  23. G.A. Zickler, B. Smarsly, N. Gierlinger, H. Peterlik, and O. Paris, A reconsideration of the relationship between the crystallite size L a of carbons determined by X-ray diffraction and Raman spectroscopy, Carbon, 44(2006), No. 15, p. 3239.

    Article  CAS  Google Scholar 

  24. T. Xu, X.J. Ning, G.W. Wang, W. Laing, J.L. Zhang, Y.J. Li, H.Y. Wang, and C.H. Jiang, Combustion characteristics and kinetic analysis of co-combustion between bag dust and pulverized coal, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1412.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51574023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-bin Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zuo, Hb., Wang, Js. et al. The mechanism and products for co-thermal extraction of biomass and low-rank coal with NMP. Int J Miner Metall Mater 26, 1512–1522 (2019). https://doi.org/10.1007/s12613-019-1872-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1872-z

Keywords

Navigation