Skip to main content
Log in

Research progress in enhanced bioleaching of copper sulfides under the intervention of microbial communities

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Compared with the traditional pyrometallurgical process, copper bioleaching has distinctive advantages of high efficiency and lower cost, enabling efficiently extracts of valuable metal resources from copper sulfides. Moreover, during long-term industrial applications of bioleaching, many regulatory enhancements and technological methods are used to accelerate the interfacial reactions. With advances in microbial genetic and sequencing technologies, bacterial communities and their mechanisms in bioleaching systems have been revealed gradually. The bacterial proliferation and dissolution of sulfide ores by a bacterial community depends on the pH, temperature, oxygen, reaction product regulation, additives, and passivation substances, among other factors. The internal relationship among the influencing factors and the succession of microorganism diversity are discussed and reviewed in this paper. This paper is intended to provide a good reference for studies related to enhanced bioleaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Petersen, Heap leaching as a key technology for recovery of values from low-grade ores-A brief overview, Hydrometallurgy, 165(2016), p. 1.

    Article  CAS  Google Scholar 

  2. I.M.S.K. Ilankoon, Y. Tang, Y. Ghorbani, S. Northey, M. Yel-lishetty, X.Y. Deng, and D. McBride, The current state and future directions of percolation leaching in the Chinese mining industry: Challenges and opportunities, Miner. Eng., 125(2018), p. 1.

    Article  CAS  Google Scholar 

  3. C.L. Brierley, Biohydrometallurgical prospects, Hydrometal-lurgy, 104(2010), No. 34-4, p. 1.

    Article  CAS  Google Scholar 

  4. S.H. Yin, L.M. Wang, E. Kabwe, X. Chen, R.F. Yan, K. An, L. Zhang, and A.X. Wu, Copper bioleaching in China: Review and prospect, Minerals, 8(2018), No. 2, p. 1.

    Google Scholar 

  5. H.R. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides-A review, Hydrometallurgy, 84(2006), No. 12-2, p. 1.

    Article  CAS  Google Scholar 

  6. D. Dreisinger, Copper leaching from primary sulfides: Options for biological and chemical extraction of copper, Hy-drometallurgy, 83(2006), No. 14-4, p. 1.

    Google Scholar 

  7. S.H. Yin, L.M. Wang, A.X. Wu, M.L. Free, and E. Kabwe, Enhancement of copper recovery by acid leaching of high-mud copper oxides: A case study at Yangla Copper Mine, China, J. Cleaner Prod., 202(2018), p. 1.

    Article  Google Scholar 

  8. S.H. Yin, L.M. Wang, A.X. Wu, E. Kabwe, X. Chen, and R.F. Yan, Copper recycle from sulfide tailings using combined leaching of ammonia solution and alkaline bacteria, J. Cleaner Prod., 189(2018), p. 1.

    Article  Google Scholar 

  9. R.M. Ruan, J.K. Wen, and J.H. Chen, Bacterial heap-leaching: Practice in Zijinshan copper mine, Hydrome-tallurgy, 83(2006), No. 14–4, p. 1.

    Article  CAS  Google Scholar 

  10. J.A. Brierley and C.L. Brierley, Present and future commercial applications of biohydrometallurgy, Hydrometallurgy, 59(2001), No. 23–3, p. 1.

    Article  Google Scholar 

  11. J.C. Gentina and F. Acevedo, Application of bioleaching to copper mining in Chile, Electron. J. Biotechnol., 16(2013), No. 3, p. 1.

    Article  CAS  Google Scholar 

  12. S.H. Yin, A.X. Wu, K.J. Hu, Y.M. Wang, and Z.L. Xue, Visualization of flow behavior during bioleaching of waste rock dumps under saturated and unsaturated conditions, Hydro-metallurgy, 133(2013), p. 1.

    CAS  Google Scholar 

  13. S.H. Yin, L.M. Wang, X. Chen, and A.X. Wu, Effect of ore size and heap porosity on capillary process inside leaching heap, Trans. Nonferrous Met. Soc. China, 26(2016), No. 3, p. 1.

    Article  CAS  Google Scholar 

  14. X.D. Hao, Y.L. Liang, H.Q. Yin, H.W. Liu, W.M. Zeng, and X.D. Liu. Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains and microbial community succession analysis, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 1.

    Article  CAS  Google Scholar 

  15. H.R. Watling, D.M. Collinson, S. Fjastad, A.H. Kaksonen, J. Li, C. Morris, F.A. Perrot, S.M. Rea, and D.W. Shiers, Column bioleaching of a polymetallic ore: Effects of pH and temperature on metal extraction and microbial community structure, Miner. Eng., 58(2014), p. 1.

    Article  CAS  Google Scholar 

  16. A.N. Nikoloski, G. P. O’Malley, and S.J. Bagas, The effect of silver on the acidic ferric sulfate leaching of primary copper sulfides under recycle solution conditions observed in heap leaching. Part 1: Kinetics and reaction mechanisms, Hydro-metallurgy, 173(2017), p. 1.

    Google Scholar 

  17. A.R. Colmer, K.L. Temple, and M.E. Hinkle, An iron-oxidizing bacterium from the acid drainage of some bituminous coal mines, J. Bacteriol., 59(1950), No. 3, p. 1.

    Google Scholar 

  18. X.Y. Liu, B.W. Chen, J.H. Chen, M.J. Zhang, J.K. Wen, D.Z. Wang, and R.M. Ruan, Spatial variation of microbial community structure in the Zijinshan commercial copper heap bioleaching plant, Miner. Eng., 94(2016), p. 1.

    Article  CAS  Google Scholar 

  19. C.L. Brierley, Bacterial succession in bioheap leaching, Hy-drometallurgy, 59(2001), No. 23-3, p. 1.

    Google Scholar 

  20. R.R. Auld, M. Myre, N. C.S. Mykytczuk, L.G. Leduc, and T.J.S. Merritt, Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques, J. Microbiol. Methods, 93(2013), No. 2, p. 1.

    Article  CAS  Google Scholar 

  21. A. Vardanyan, S. Stepanyan, N. Vardanyan, L. Markosyan, W. Sand, M. Vera, and R.Y. Zhang, Study and assessment of microbial communities in natural and commercial bioleach-ing systems, Miner. Eng., 81(2015), p. 1.

    Article  CAS  Google Scholar 

  22. D. Travisany, M.P. Cortés, M. Latorre, A.D. Genova, M. Bu-dinich, R.A. Bobadilla-Fazzini, P. Parada, M. González, and A. Maass, A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment, Res. Microbiol., 165(2014), No. 9, p. 1.

    Article  CAS  Google Scholar 

  23. S.P. Li, N. Guo, H.Y. Wu, G.Z. Qiu, and X.Y. Liu, High efficient mixed culture screening and selected microbial community shift for bioleaching process, Trans. Nonferrous Met. Soc. China, 21(2011), No. 6, p. 1.

    Article  CAS  Google Scholar 

  24. F.F. Roberto, 16S-rRNA gene-targeted amplicon sequence analysis of an enargite-dominant bioleach demonstration in Peru, Hydrometallurgy, 180(2018), p. 1.

    Article  CAS  Google Scholar 

  25. A. Potysz, E.D. van Hullebusch, and J. Kierczak, Perspectives regarding the use of metallurgical slags as secondary metal resources-A review of bioleaching approaches, J. Environ. Manage., 219(2018), p. 1.

    Article  CAS  Google Scholar 

  26. D.W. Shiers, D.M. Collinson, and H.R. Watling, Life in heaps: A review of microbial responses to variable acidity in sulfide mineral bioleaching heaps for metal extraction, Res. Microbiol., 167(2016), No. 7, p. 1.

    Article  CAS  Google Scholar 

  27. R.L. Yu, L.J. Shi, G.H. Gu, D. Zhou, L. You, M. Chen, G.Z. Qiu, and W.M. Zeng, The shift of microbial community under the adjustment of initial and processing pH during bi-oleaching of chalcopyrite concentrate by moderate thermo-philes, Bioresour. Technol., 162(2014), p. 1.

    Article  CAS  Google Scholar 

  28. C. Demergasso, F. Galleguillos, P. Soto, M. Serón, and V. Iturriaga, Microbial succession during a heap bioleaching cycle of low grade copper sulfides: does this knowledge mean a real input for industrial process design and control?, Hydrometallurgy, 104(2010), No. 34-4, p. 1.

    Article  CAS  Google Scholar 

  29. A. Sklodowska and R. Matlakowska, Bioleaching of metals in neutral and slightly alkaline environment, Microbial Processing of Metal Sulfides, Springer, Dordrecht, 2007, p. 1.

    Google Scholar 

  30. K.J. Hu, A.X. Wu, H.J. Wang, and S.Y. Wang, A new heterotrophic strain for bioleaching of low grade complex copper ore, Minerals, 6(2016), No. 1, p. 1.

    Google Scholar 

  31. V.I. Groudeva, K. Krumova, and S.N. Groudev, Bioleaching of a rich-in-carbonates copper ore at alkaline pH, Adv. Mater. Res., 20–21(2007), p. 1.

    Google Scholar 

  32. M.W. Beijerinck, Ueber Die Bakterien Welche Sich Im Dun-kels Mit Kohlensaure Als Kohlenstoffquelle Ernahren Kon-nen, Centralb Bacteriol Parasitenkb Infektionskr Hyg Abt II, 11(1904), p. 1.

    Google Scholar 

  33. D.P. Kelly and A.P. Wood, Reclassification of some species of Thiobacillus to the newly designated genera Acidithioba-cillus gen. nov., Halothiobacillus gen. nov. and Thermithi-obacillus gen. nov., Int. J. Syst. Evol. Microbiol., 50(2000), No. 2, p. 1.

    Google Scholar 

  34. D.P. Kelly, I.R. McDonald, and A.P. Wood, Proposal for the reclassification of Thiobacillus novellas as Starkeya novella gen. nov., comb. nov., in the alpha-subclass of the Proteobac-teria, Int. J. Syst. Evol. Microbiol., 50(2000), No. 5, p. 1.

    Google Scholar 

  35. L.Y. Ma, X.J. Wang, X. Feng, Y.L. Liang, Y.H. Xiao, X.D. Hao, H.Q. Yin, H.W. Liu, and X.D. Liu, Co-culture microorganisms with different initial proportions reveal the mechanism of chalcopyrite bioleaching coupling with microbial community succession, Bioresour. Technol., 223(2017), p. 1.

    Article  CAS  Google Scholar 

  36. J.P. Cárdenas, R. Quatrini, and D.S. Holmes, Genomic and metagenomic challenges and opportunities for bioleaching: A mini-review, Res. Microbiol., 167(2016), No. 7, p. 1.

    Article  CAS  Google Scholar 

  37. Y.B. Dong, H. Lin, and Y. Zhang, Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 1.

    Article  CAS  Google Scholar 

  38. H.L. Yang, S.S. Feng, Y. Xin, and W. Wang, Community dynamics of attached and free cells and the effects of attached cells on chalcopyrite bioleaching by Acidithiobacillus sp., Bioresour. Technol., 154(2014), p. 1.

    Article  CAS  Google Scholar 

  39. L.X. Chen, L.N. Huang, C. Méndez-García, J.L. Kuang, Z.S. Hua, J. Liu, and W.S. Shu, Microbial communities, processes and functions in acid mine drainage ecosystems, Curr. Opin. Biotechnol., 38(2016), p. 1.

    Article  CAS  Google Scholar 

  40. X.M. Diao, E. Taran, S. Mahler, and A.V. Nguyen, A concise review of nanoscopic aspects of bioleaching bacteria-mineral interactions, Adv. Colloid Interface Sci., 212(2014), p. 1.

    Article  CAS  Google Scholar 

  41. Q. Hu, X. Guo, Y.L. Liang, X.D. Hao, L.Y. Ma, H.Q. Yin, and X.D. Liu, Comparative metagenomics reveals microbial community differentiation in a biological heap leaching system, Res. Microbiol., 166(2015), No. 6, p. 1.

    Article  CAS  Google Scholar 

  42. S. Jeremic, V.P. Beškoski, L. Djokic, B. Vasiljevic, M.M. Vrvic, J. Avdalovic, G. G. Cvijovic, L.S. Beškoski, and J. Ni-kodinovic-Runic, Interactions of the metal tolerant hetero-trophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments, J. Environ. Manage., 172(2016), p. 1.

    Article  CAS  Google Scholar 

  43. S.B. Noei, S. Sheibani, F. Rashchi, and S.M.J. Mirazimi, Kinetic modeling of copper bioleaching from low-grade ore from the Shahrbabak Copper Complex, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 1.

    Article  CAS  Google Scholar 

  44. H.C. Liu, J.L. Xia, Z.Y. Nie, C.Y. Ma, L. Zheng, C.H. Hong, Y.D. Zhao, and W. Wen, Bioleaching of chalcopyrite by Aci-dianus manzaensis under different constant pH, Miner. Eng., 98(2016), p. 1.

    Article  CAS  Google Scholar 

  45. D. Fullston, D. Fornasiero, and J. Ralston, Zeta potential study of the oxidation of copper sulfide minerals, Colloids Surf. A, 146(1999), No. 13-3, p. 1.

    Article  Google Scholar 

  46. A. Sweity, Y. Wang, S. Belfer, G. Oron, and M. Herzberg, pH effects on the adherence and fouling propensity of extracellular polymeric substances in a membrane bioreactor, J. Membr. Sci., 378(2011), No. 12-2, p. 1.

    Article  CAS  Google Scholar 

  47. T.J. Peng, L.J. Shi, R.L. Yu, G.H. Gu, D. Zhou, M. Chen, G.Z. Qiu, and W.M. Zeng, Effects of processing pH stimulation on cooperative bioleaching of chalcopyrite concentrate by free and attached cells, Trans. Nonferrous Met. Soc. China, 26(2016), No. 8, p. 1.

    Article  CAS  Google Scholar 

  48. H.R. Watling, D.M. Collinson, D.W. Shiers, C.G. Bryan, and E. L.J. Watkin, Effects of pH, temperature and solids loading on microbial community structure during batch culture on a polymetallic ore, Miner. Eng., 48(2013), p. 1.

    Article  CAS  Google Scholar 

  49. N.J. Boxall, S.M. Rea, J. Li, C. Morris, and A.H. Kaksonen, Effect of high sulfate concentrations on chalcopyrite bi-oleaching and molecular characterisation of the bioleaching microbial community, Hydrometallurgy, 168(2017), p. 1.

    Article  CAS  Google Scholar 

  50. X.Y. Liu, B. Wu, B.W. Chen, J.K. Wen, R.M. Ruan, G.C. Yao, and D.Z. Wang, Bioleaching of chalcocite started at different pH: Response of the microbial community to environmental stress and leaching kinetics, Hydrometallurgy, 103(2010), No. 34-4, p. 1.

    Article  CAS  Google Scholar 

  51. Y. Yun, H. Wang, B. Man, X. Xiang, J. Zhou, X. Qiu, Y. Duan, and A.S. Engel, The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification, Front. Microbiol., 7(2016), p. 1.

    Article  Google Scholar 

  52. M. Jafari, H. Abdollahi, S.Z. Shafaei, M. Gharabaghi, H. Ja-fari, A. Akcil, and S. Panda, Acidophilic bioleaching: A review on the process and effect of organic-inorganic reagents and materials on its efficiency, Miner. Process. Extr. Metall. Rev., 40(2019), No. 2, p. 1.

    Article  CAS  Google Scholar 

  53. R.L. Yu, J. Liu, A. Chen, D.L. Zhong, Q. Li, W.Q. Qin, G.Z. Qiu, and G.H. Gu, Interaction mechanism of Cu2+, Fe3+ ions and extracellular polymeric substances during bioleaching chalcopyrite by Acidithiobacillus ferrooxidans ATCC2370, Trans. Nonferrous Met. Soc. China, 23(2013), No. 1, p. 1.

    Article  CAS  Google Scholar 

  54. B.H. Yang, A.X. Wu, G.A. Narsilio, X.X. Miao, and S.Y. Wu, Use of high-resolution X-ray computed tomography and 3D image analysis to quantify mineral dissemination and pore space in oxide copper ore particles, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 1.

    Article  Google Scholar 

  55. Y. Jia, Q. Tan, H.Y. Sun, Y. P. Zhang, H.S. Gao, and R.M. Ruan, Sulfide mineral dissolution microbes: Community structure and function in industrial bioleaching heaps, Green Energy Environ., 4(2019), No. 1, p. 1.

    Article  Google Scholar 

  56. X.D. Hao, Y.L. Liang, H.Q. Yin, L.Y. Ma, Y.H. Xiao, Y.Z. Liu, G.Z. Qiu, and X.D. Liu, The effect of potential heap construction methods on column bioleaching of copper flotation tailings containing high levels of fines by mixed cultures, Miner. Eng., 98(2016), p. 1.

    Article  CAS  Google Scholar 

  57. M. Acosta, P. Galleguillos, Y. Ghorbani, P. Tapia, Y. Conta-dor, A. Velásquez, C. Espoz, C. Pinilla, and C. Demergasso, Variation in microbial community from predominantly me-sophilic to thermotolerant and moderately thermophilic species in an industrial copper heap bioleaching operation, Hy-drometallurgy, 150 (2014), p. 1.

    Google Scholar 

  58. X.X. Miao, G.A. Narsilio, A.X. Wu, and B.H. Yang, A 3D dual pore-system leaching model. Part 1: Study on fluid flow, Hydrometallurgy, 167(2017), p. 1.

    Article  CAS  Google Scholar 

  59. N. Dhawan, M.S. Safarzadeh, J.D. Miller, M.S. Moats, R.K. Rajamani, and C.L. Lin, Recent advances in the application of X-ray computed tomography in the analysis of heap leaching systems, Miner. Eng., 35(2012), p. 1.

    Article  CAS  Google Scholar 

  60. I.M.S.K. Ilankoon and S.J. Neethling, Inter-particle liquid spread pertaining to heap leaching using UV fluorescence based image analysis, Hydrometallurgy, 183(2019), p. 1.

    Article  CAS  Google Scholar 

  61. C.L. Lin, A.R. Videla, and J.D. Miller, Advanced three-dimensional multiphase flow simulation in porous media reconstructed from X-ray Microtomography using the He-Chen-Zhang Lattice Boltzmann Model, Flow Meas. In-strum., 21(2010), No. 3, p. 1.

    Article  CAS  Google Scholar 

  62. A.X. Wu, S.H. Yin, H.J. Wang, W.Q. Qin, and G.Z. Qiu, Technological assessment of a mining-waste dump at the Dexing copper mine, China, for possible conversion to an in situ bioleaching operation, Bioresour. Technol., 100(2009), No. 6, p. 1.

    Article  CAS  Google Scholar 

  63. I.M.S.K. Ilankoon and S.J. Neethling, Liquid spread mechanisms in packed beds and heaps. The separation of length and time scales due to particle porosity, Miner. Eng., 86(2016), p. 1.

    Article  CAS  Google Scholar 

  64. I.M.S.K. Ilankoon, K.E. Cole, and S.J. Neethling, Measuring hydrodynamic dispersion coefficients in unsaturated packed beds: Comparison of PEPT with conventional tracer tests, Chem. Eng. Sci., 89(2013), p. 1.

    Article  CAS  Google Scholar 

  65. I.M.S.K. Ilankoon and S.J. Neethling, Hysteresis in unsatu-rated flow in packed beds and heaps, Miner. Eng., 35(2012), p. 1.

    Article  CAS  Google Scholar 

  66. W.Y. Liu and M. Hashemzadeh, Solution flow behavior in response to key operating parameters in heap leaching, Hy-drometallurgy, 169(2017), p. 1.

    Google Scholar 

  67. A.X. Wu, S.H. Yin, W.Q. Qin, J.S. Liu, and G.Z. Qiu, The effect of preferential flow on extraction and surface morphology of copper sulphides during heap leaching, Hydrometal-lurgy, 95(2009), No. 12-2, p. 1.

    Article  CAS  Google Scholar 

  68. A.X. Wu, S.H. Yin, B.H. Yang, J. Wang, and G.Z. Qiu, Study on preferential flow in dump leaching of low-grade ores, Hy-drometallurgy, 87(2007), No. 34-4, p. 1.

    Google Scholar 

  69. S. Orr, Enhanced heap leaching-I. Insights, Min. Eng., 54(2002), No. 9, p.1.

  70. S. Orr and V. Vesselinov, Enhanced heap leaching-II. Applications, Min. Eng., 54(2002), No. 10, p. 1.

    Google Scholar 

  71. L.R.P. de andrade Lima, Liquid axial dispersion and holdup in column leaching, Miner. Eng., 19(2006), No. 1, p. 1.

    Article  CAS  Google Scholar 

  72. I.M.S.K. Ilankoon and S.J. Neethling, The effect of particle porosity on liquid holdup in heap leaching, Miner. Eng., 45(2013), p. 1.

    Article  CAS  Google Scholar 

  73. R. Chiume, S.H. Minnaar, I.E. Ngoma, C.G. Bryan, and S.T.L. Harrison, Microbial colonisation in heaps for mineral bioleaching and the influence of irrigation rate, Miner. Eng., 39(2012), p. 1.

    Article  CAS  Google Scholar 

  74. D. McBride, I.M.S.K. Ilankoon, S.J. Neethling, J.E. Geb-hardt, and M. Cross, Preferential flow behaviour in unsatu-rated packed beds and heaps: Incorporating into a CFD model, Hydrometallurgy, 171(2017), p. 1.

    Article  CAS  Google Scholar 

  75. M.A. Fagan-Endres, S.T. Harrison, M.L. Johns, and A.J. Se-derman, Magnetic resonance imaging characterisation of the influence of flowrate on liquid distribution in drip irrigated heap leaching, Hydrometallurgy, 158(2015), p. 1.

    Article  CAS  Google Scholar 

  76. M.A. Fagan, I.E. Ngoma, R.A. Chiume, S. Minnaar, A.J. Se-derman, M.L. Johns, and S.T.L. Harrison, MRI and gravimetric studies of hydrology in drip irrigated heaps and its effect on the propagation of bioleaching micro-organisms, Hydro-metallurgy, 150(2014), p. 1.

    Google Scholar 

  77. H.D. Pan, H.Y. Yang, L.L. Tong, C.B. Zhong, and Y.S. Zhao, Control method of chalcopyrite passivation in bioleaching, Trans. Nonferrous Met. Soc. China, 22(2012), No. 9, p. 1.

    Article  CAS  Google Scholar 

  78. H.B. Zhao, Y.S. Zhang, X. Zhang, L. Qian, M.L. Sun, Y. Yang. Y.S. Zhang, J. Wang, H. Kim, and G.Z. Qiu, The dissolution and passivation mechanism of chalcopyrite in bi-oleaching: An overview, Miner. Eng., 136(2019), p. 1.

    Article  CAS  Google Scholar 

  79. H.R. Watling. Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate-chloride and sulfate-nitrate process options, Hydrometallurgy, 140(2013), p. 1.

    Article  CAS  Google Scholar 

  80. Y.B. Li, G.J. Qian, P.L. Brown, and A.R. Gerson, Chalcopy-rite dissolution: Scanning photoelectron microscopy examination of the evolution of sulfur species with and without added iron or pyrite, Geochim. Cosmochim. Acta, 212(2017), p. 1.

    Article  CAS  Google Scholar 

  81. R. Liu, A.L. Wolfe, D.A. Dzombak, C.P. Horwitz, B.W. Stewart, and R.C. Capo. Electrochemical study of hydrothermal and sedimentary pyrite dissolution, Appl. Geochem., 23(2008), No. 9, p. 1.

    Article  CAS  Google Scholar 

  82. H.B. Zhao, J. Wang, X.W. Gan, M.H. Hu, E.X. Zhang, W.Q. Qin, and G.Z. Qiu, Cooperative bioleaching of chalcopyrite and silver-bearing tailing by mixed moderately thermophilic culture: An emphasis on the chalcopyrite dissolution with XPS and electrochemical analysis, Miner. Eng., 81(2015), p. 1.

    Article  CAS  Google Scholar 

  83. L.Y. Ma, X.J. Wang, X.D. Liu, S.Q. Wang, and H.M. Wang, Intensified bioleaching of chalcopyrite by communities with enriched ferrous or sulfur oxidizers, Bioresour. Technol., 268(2018), p. 1.

    Article  CAS  Google Scholar 

  84. Z.Z. Huang, S.S. Feng, Y.J. Tong, and H.L. Yang, Enhanced “contact mechanism” for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus, J. Environ. Manage., 242(2019), p. 1.

    Article  CAS  Google Scholar 

  85. A. Ahmadi, M. Ranjbar, M. Schaffie, and J. Petersen, Kinetic modeling of bioleaching of copper sulfide concentrates in conventional and electrochemically controlled systems, Hy-drometallurgy, 127(2012), p. 1.

    Google Scholar 

  86. C.S. Davis-Belmar, D. Cautivo, C. Demergasso, and G. Rau-tenbach, Bioleaching of copper secondary sulfide ore in the presence of chloride by means of inoculation with chloride-tolerant microbial culture, Hydrometallurgy, 150(2014), p. 1.

    Article  CAS  Google Scholar 

  87. C. Castro and E. Donati, Effects of different energy sources on cell adhesion and bioleaching of a chalcopyrite concentrate by extremophilic archaeon Acidianus copahuensis, Hy-drometallurgy, 162(2016), p. 1.

    Google Scholar 

  88. Y.G. Wang, L.J. Su, W.M. Zeng, G.Z. Qiu, L.L. Wan, X.H. Chen, and H.B. Zhou, Optimization of copper extraction for bioleaching of complex Cu-polymetallic concentrate by moderate thermophiles, Trans. Nonferrous Met. Soc. China, 24(2014), No. 4, p. 1.

    Article  CAS  Google Scholar 

  89. A.H. Kaksonen, S. Särkijärvi, J.A. Puhakka, E. Peuraniemi, and O.H. Tuovinen, Chemical and bacterial leaching of metals from a smelter slag in acid solutions, Hydrometallurgy, 159(2016), p. 1.

    Article  CAS  Google Scholar 

  90. P. Sarfo, A. Das, G. Wyss, and C. Young, Recovery of metal values from copper slag and reuse of residual secondary slag, Waste Manage., 70(2017), p. 1.

    Article  CAS  Google Scholar 

  91. Z.L. Wu, L.C. Zou, J.H. Chen, X.K. Lai, and Y. G. Zhu, Column bioleaching characteristic of copper and iron from Zi-jinshan sulfide ores by acid mine drainage, Int. J. Miner. Process., 149(2016), p. 1.

    Article  CAS  Google Scholar 

  92. M. Zhang, X.M. Guo, B. Tian, J. Wang, S.Y. Qi, Y.F. Yang, and B.P. Xin, Improved bioleaching of copper and zinc from brake pad waste by low-temperature thermal pretreatment and its mechanisms, Waste Manage., 87(2019), p. 1.

    Article  CAS  Google Scholar 

  93. G.J. Olson, J.A. Brierley, and C.L. Brierley, Bioleaching review part B: progress in bioleaching: applications of micro-bial processes by the minerals industries, Appl. Microbiol. Biotechnol., 63(2003), No. 3, p. 1.

    Article  CAS  Google Scholar 

  94. W.Y. Liu and G. Granata, Temperature control in copper heap bioleaching, Hydrometallurgy, 176(2018), p. 1.

    Article  CAS  Google Scholar 

  95. J. Petersen and D.G. Dixon, Principles, mechanisms and dynamics of chalcocite heap bioleaching, Microbial Processing of Metal Sulfides, Springer, Dordrecht, 2007, p. 1.

    Google Scholar 

  96. P.R. Norris, L. Laigle, T.J. Ogden, and O.J.P. Gould, Selection of thermophiles for base metal sulfide concentrate leaching, Part I: Effect of temperature on copper concentrate leaching and silver recovery, Miner. Eng., 106(2017), p. 1.

    Article  CAS  Google Scholar 

  97. Y.G. Wang, X.H. Chen, and H.B. Zhou, Disentangling effects of temperature on microbial community and copper extraction in column bioleaching of low grade copper sulfide, Bio-resour. Technol., 268(2018), p. 1.

    Article  CAS  Google Scholar 

  98. B.W. Chen and J.K. Wen, Feasibility study on heap bi-oleaching of chalcopyrite, Rare Met., 32(2013), No. 5, p. 1.

    Article  CAS  Google Scholar 

  99. T. Huang and D.W. Li, Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohy-drometallurgy-a presentation, Biotechnol. Rep., 4(2014), p. 1.

    Article  Google Scholar 

  100. S. Hedrich, C. Joulian, T. Graupner, A. Schippers, and A.G. Guézennec, Enhanced chalcopyrite dissolution in stirred tank reactors by temperature increase during bioleaching, Hydro-metallurgy, 179(2018), p. 1.

    Google Scholar 

  101. R.H. Liu, J. Chen, W.B. Zhou, H.N. Cheng, and H.B. Zhou, Insight to the early-stage adsorption mechanism of moderately thermophilic consortia and intensified bioleaching of chalcopyrite, Biochem. Eng. J., 144(2019), p. 1.

    Article  CAS  Google Scholar 

  102. A.E. Anderson and F.K. Cameron, Recovery of copper by leaching, Ohio Copper Co. of Utah, AIME TRANS, 71(1926), p. 1.

    Google Scholar 

  103. S.F. Yu, A.X. Wu, and Y.M. Wang, Insight into the structural evolution of porous and fractured media by forced aeration during heap leaching, Int. J. Min. Sci. Technol., 29(2018), No. 5, p. 1.

    Google Scholar 

  104. L. Ahonen and O.H. Touvinen, Bacterial leaching of complex sulfide ore samples in bench-scale column reactors, Hydro-metallurgy, 37(1995), No. 1, p. 1.

    CAS  Google Scholar 

  105. V.K. Nguyen, M.G. Ha, S. Shin, M. Seo, J. Jang, S. Jo, D. Kim, S. Lee, Y. Jung, P. Kang, C. Shin, and Y. Ahn, Electrochemical effect on bioleaching of arsenic and manganese from tungsten mine wastes using Acidithiobacillus spp, J. Environ. Manage., 223(2018), p. 1.

    Article  CAS  Google Scholar 

  106. W.J. Schlitt, History of forced aeration in copper sulfide leaching, Min. Metall. Explor., 23(2006), No. 2, p. 1.

    CAS  Google Scholar 

  107. H.M. Lizama, Copper bioleaching behaviour in an aerated heap, Int. J. Miner. Process., 62(2011), No. 14-4, p. 1.

    Google Scholar 

  108. D.G. Dixon, Analysis of heat conservation during copper sulphide heap leaching, Hydrometallurgy, 58(2000), No. 1, p. 1.

    Article  Google Scholar 

  109. H.J. Wang, A.X. Wu, X. Zhou, S.Y. Wang, and J. Zhang, Accelerating column leaching trial on copper sulfide ore, Rare Met., 27(2008), No. 1, p. 1.

    Article  Google Scholar 

  110. A.G. Guezennec, C. Joulian, J. Jacob, A. Archane, D. Ibarra, R. de Buyer, F. Bodénan, and P. d’Huguesa, Influence of dissolved oxygen on the bioleaching efficiency under oxygen enriched atmosphere, Miner. Eng., 106(2017), p. 1.

    Article  CAS  Google Scholar 

  111. S. Panda, A. Akcil, N. Pradhan, and H. Deveci, Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology, Bioresour. Technol., 196(2015), p. 1.

    Article  CAS  Google Scholar 

  112. A. Mazuelos, C.J. García-Tinajero, R. Romero, N. Iglesias, and F. Carranza, Oxygen solubility in copper bioleaching solutions, Hydrometallurgy, 167(2017), p. 1.

    Article  CAS  Google Scholar 

  113. C.M. Ai, A.X. Wu, Y.M. Wang, and C.L. Hou, Optimization and mechanism of surfactant accelerating leaching test, J. Cent. South Univ., 23(2016), No. 5, p. 1.

    Article  CAS  Google Scholar 

  114. S. Panda, A. Biswal, S. Mishra, P.K. Panda, N. Pradhan, U. Mohapatra, L.B. Sukla, B.K. Mishra, and A. Akcil, Reductive dissolution by waste newspaper for enhanced me-so-acidophilic bioleaching of copper from low grade chalco-pyrite: A new concept of biohydrometallurgy, Hydrometal-lurgy, 153(2015), p. 1.

    Article  CAS  Google Scholar 

  115. W. Sand and T. Gehrke, Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria, Res. Micro-biol., 157(2006), No. 1, p. 1.

    Article  Google Scholar 

  116. S.H. Yin, W. Chen, X. Chen, and L.M. Wang, Bacterial-mediated recovery of copper from low-grade copper sulphide using acid-processed rice straw, Bioresour. Technol., 288(2019), art. No. 121605.

    Article  CAS  Google Scholar 

  117. W.H. Gu, J.F. Bai, B. Dong, X.N. Zhuang, J. Zhao, C.L. Zhang, J.W. Wang, and K.M. Shih, Catalytic effect of gra-phene in bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans, Hydrometallurgy, 171(2017), p. 1.

    Article  CAS  Google Scholar 

  118. G. Debernardi, J.C. Gentina, P. Albistur, and G. Slanzi, Evaluation of processing options to avoid the passivation of chal-copyrite, Int. J. Miner. Process., 125(2013), p. 1.

    Article  CAS  Google Scholar 

  119. A.A. Peng, H.C. Liu, Z.Y. Nie, and J.L. Xia, Effect of surfactant Tween-80 on sulfur oxidation and expression of sulfur metabolism relevant genes of Acidithiobacillus ferrooxidans, Trans. Nonferrous Met. Soc. China, 22(2012), No. 12, p. 1.

    Article  CAS  Google Scholar 

  120. V. Gopinath, S. Saravanan, A.R. Al-Maleki, M. Ramesh, and J. Vadivelu, A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen, Biomed. Pharmacother., 107(2018), p. 1.

    Article  CAS  Google Scholar 

  121. H.R. Watling, The bioleaching of nickel-copper sulfides, Hy-drometallurgy, 91(2008), No. 14-4, p. 1.

    Google Scholar 

  122. R.Y. Zhang, D.Z. Wei, Y.B. Shen, W.G. Liu, T. Lu, and C. Han, Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus fer-rooxidans, Miner. Eng., 95(2016), p. 1.

    Article  CAS  Google Scholar 

  123. W.P. Liu and X.F. Yin, Recovery of copper from copper slag using a microbial fuel cell and characterization of its electro-genesis, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 1.

    Article  Google Scholar 

  124. S.H. Wang, Y. Zheng, W.F. Yan, L.X. Chen, G.D. Mahade-van, and F. Zhao, Enhanced bioleaching efficiency of metals from E-wastes driven by biochar, J. Hazard. Mater., 320(2016), p. 1.

    Article  CAS  Google Scholar 

  125. Y. Jia, H.Y. Sun, Q.Y. Tan, H.S. Gao, X.L. Feng, R.M. Ruan, Linking leach chemistry and microbiology of low-grade copper ore bioleaching at different temperature, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 271.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFC0600704), the National Science Fund for Excellent Young Scholars of China (No. 51722401), and the Key Program of National Natural Science Foundation of China (No. 51734001). Moreover, the authors would like to thank foundation of China Scholarship Council, Prof. David Drei-singer and Prof. Wenying Liu for the precious learning opportunities in UBC, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei-ming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Sh., Wang, Lm., Wu, Ax. et al. Research progress in enhanced bioleaching of copper sulfides under the intervention of microbial communities. Int J Miner Metall Mater 26, 1337–1350 (2019). https://doi.org/10.1007/s12613-019-1826-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1826-5

Keywords

Navigation