Skip to main content
Log in

Radical Substitution of the Dithiocarbonyl Group of Poly(methyl methacrylate) Obtained by Reversible Addition–Fragmentation Chain Transfer Polymerization

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

The authors perform a systematic study of the reaction of radical replacement of the dithiocarbonyl group of poly(methyl methacrylate) (PMMA) obtained by reversible addition–fragmentation chain transfer polymerization upon interaction with a radical azo initiator in an inert solvent at 80°C. It is shown that, for a polymer with a dithiobenzoate group, an increase in the molar ratio of the concentrations of the initiator and macromolecules with a terminal dithiobenzoate group to 100 equivalents promotes fast and quantitative replacement of the dithiobenzoate group by the initiator fragment and suppression of side chain termination reactions with the participation of radical intermediates. To replace the trithiocarbonate group, milder conditions are required, namely, a 20-fold molar excess of the initiator and a short reaction time of 2–5 h. The stability of the radical intermediates plays the decisive role in choosing the replacement reaction conditions. The reversible chain transfer agent formed during the replacement reactions, a low-molecular-weight compound containing a dithiocarbonyl fragment, can be repeatedly used for PMMA synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. D. A. Shipp, Polym. Rev. 51, 99 (2011).

    Article  CAS  Google Scholar 

  2. Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies, Ed. by K. Matyjaszewski, H. Gao, B. S. Sumerlin, and N. V. Tsarevsky (ACS Symp. Ser., Washington, DC, 2018), Vol. 1284.

    Google Scholar 

  3. M. Destarac, Polym. Chem. 9, 4947 (2018).

    Article  CAS  Google Scholar 

  4. B. Klumperman, in Encyclopedia of Polymer Science and Technology, Ed. by H. F. Mark (Wiley, New York, 2015), p. 1.

    Google Scholar 

  5. D. Vinciguerra, J. Tran, and J. Nicolas, Chem. Commun. 54, 228 (2018).

    Article  CAS  Google Scholar 

  6. G. Moad, E. Rizzardo, and S. H. Thang, Polymer 49, 1079 (2008).

    Article  CAS  Google Scholar 

  7. G. Moad, E. Rizzardo, and S. H. Thang, Aust. J. Chem. 62, 1402 (2009).

    Article  CAS  Google Scholar 

  8. G. Moad, E. Rizzardo, and S. H. Thang, Polym. Int. 60, 9 (2011).

    Article  CAS  Google Scholar 

  9. G. Moad, E. Rizzardo, and S. H. Thang, Aust. J. Chem. 65, 985 (2012).

    Article  CAS  Google Scholar 

  10. H. Willcock and R. K. O’Reilly, Polym. Chem. 1, 149 (2010).

    Article  CAS  Google Scholar 

  11. G. Moad, E. Rizzardo, and S. H. Thang, Polym. Int. 60, 9 (2011).

    Article  CAS  Google Scholar 

  12. B. Chong, G. Moad, E. Rizzardo, M. Skidmore, and S. H. Thang, Aust. J. Chem. 59, 755 (2006).

    Article  CAS  Google Scholar 

  13. Handbook of RAFT Polymerization, Ed. by C. Barner-Kowollik (Wiley-VCH, Weinheim, 2008).

    Google Scholar 

  14. C. Boyer, M. H. Stenzel, and T. P. Davis, J. Polym. Sci., Part A: Polym. Chem. 49, 551 (2011).

    Article  CAS  Google Scholar 

  15. E. V. Chernikova and E. V. Sivtsov, Polym. Sci., Ser. B 59, 117 (2017).

    Article  CAS  Google Scholar 

  16. G. Moad, Macromol. Chem. Phys. 215, 9 (2014).

    Article  CAS  Google Scholar 

  17. J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, and S. H. Thang, Macromolecules 31, 5559 (1998).

    Article  CAS  Google Scholar 

  18. C. Barner-Kowollik, M. Buback, B. Charleux, M. L. Coote, M. Drache, T. Fukuda, A. Goto, B. Klumperman, A. B. Lowe, J. B. McLeary, G. Moad, M. J. Monteiro, R. D. Sanderson, M. P. Tonge, and P. Vana, J. Polym. Sci., Part A: Polym. Chem. 44, 5809 (2006).

    Article  CAS  Google Scholar 

  19. S. Perrier and P. Takolpuckdee, J. Polym. Sci., Part A: Polym. Chem. 43, 5347 (2005).

    Article  CAS  Google Scholar 

  20. M. A. Harvison and A. B. Lowe, Macromol. Rapid Commun. 32, 779 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Y. K. Chong, G. Moad, E. Rizzardo, and S. Thang, Macromolecules 40, 4446 (2007).

    Article  CAS  Google Scholar 

  22. C. W. Scales, A. J. Convertine, and C. L. McCormick, Biomacromolecules 7, 1389 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. A. N. Zelikin, G. K. Such, A. Postma, and F. Caruso, Biomacromolecules 8, 2950 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. G. Moad, Y. K. Chong, A. Postma, E. Rizzardo, and S. H. Thang, Polymer 46, 8458 (2005).

    Article  CAS  Google Scholar 

  25. K. L. Heredia, G. N. Grover, L. Tao, and H. D. Maynard, Macromolecules 42, 2360 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A. J. Inglis, S. Sinnwell, T. P. Davis, C. Barner-Kowollik, and M. H. Stenzel, Macromolecules 41, 4120 (2008).

    Article  CAS  Google Scholar 

  27. S. Sinnwell, A. J. Inglis, T. P. Davis, M. H. Stenzel, and C. Barner-Kowollik, Chem. Commun. 44, 2052 (2008).

    Article  CAS  Google Scholar 

  28. E. V. Chernikova, A. V. Plutalova, E. S. Garina, and D. V. Vishnevetsky, Polym. Chem. 7, 3622 (2016).

    Article  CAS  Google Scholar 

  29. J. M. Spruell, B. A. Levy, A. Sutherland, W. R. Dichtel, J. Y. Cheng, F. J. Stoddart, and A. Nelson, J. Polym. Sci., Part A: Polym. Chem. 47, 346 (2009).

    Article  CAS  Google Scholar 

  30. G. N. Grover, S. N. S. Alconcel, N. M. Matsumoto, and H. D. Maynard, Macromolecules 42, 7657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Li, P. De, S. R. Gondi, and B. S. Sumerlin, J. Polym. Sci., Part A: Polym. Chem. 46, 5093 (2008).

    Article  CAS  Google Scholar 

  32. C. Boyer, V. Bulmus, and T. P. Davis, Macromol. Rapid Commun. 30, 493 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. A. Postma, T. P. Davis, R. A. Evans, G. Li, G. Moad, and M. S. O’Shea, Macromolecules 36, 5293 (2006).

    Article  CAS  Google Scholar 

  34. M. Chen, G. Moad, and E. Rizzardo, J. Polym. Sci., Part A: Polym. Chem. 47, 6704 (2009).

    Article  CAS  Google Scholar 

  35. A. Postma, T. P. Davis, G. Moad, and M. S. O’Shea, Macromolecules 38, 5371 (2005).

    Article  CAS  Google Scholar 

  36. V. Lima, H. Jiang, J. Brokken-Zijp, P. J. Schoenmakers, B. Klumperman, and R. V. D. Linde, J. Polym. Sci., Part A: Polym. Chem. 43, 959 (2005).

    Article  CAS  Google Scholar 

  37. D. L. Patton, M. Mullings, T. Fulghum, and R. C. Advincula, Macromolecules 38, 8597 (2005).

    Article  CAS  Google Scholar 

  38. P. J. Roth, K. T. Wiss, R. Zentel, and P. Theato, Macromolecules 41, 8513 (2008).

    Article  CAS  Google Scholar 

  39. E. V. Chernikova, A. V. Tarasenko, E. S. Garina, and V. B. Golubev, Polym. Sci., Ser. A 50, 353 (2008).

    Article  Google Scholar 

  40. E. V. Chernikova, V. B. Golubev, A. N. Filippov, and E. S. Garina, Polym. Sci., Ser. C 57, 94 (2015).

    Article  CAS  Google Scholar 

  41. A. Studer and S. Amrein, Synthesis, No. 7, 835 (2002).

  42. D. V. Vishnevetski, E. V. Chernikova, E. S. Garina, and E. V. Sivtsov, Polym. Sci., Ser. B 55, 515 (2013).

    Article  CAS  Google Scholar 

  43. E. A. Litmanovich, M. Z. Bekanova, G. A. Shandryuk, E. V. Chernikova, and R. V. Talroze, Polymer 142, 1 (2018).

    Article  CAS  Google Scholar 

  44. Polymer Handbook, Ed. by J. Brandrup, E. H. Immergut, and E. A. Grulke (Wiley, New York, 1999).

    Google Scholar 

  45. G. Moad, Macromol. Chem. Phys. 215, 9 (2014).

    Article  CAS  Google Scholar 

  46. Y. Zhou, J. He, C. Li, L. Hong, and Y. Yang, Macromolecules 44, 8446 (2011).

    Article  CAS  Google Scholar 

  47. V. B. Golubev, A. N. Filippov, E. V. Chernikova, M. L. Coote, C. Y. Lin, and G. Gryn’ova, Polym. Sci., Ser. C 53, 14 (2011).

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed as part of the state task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences (investigation of the polymer with a dithiobenzoate group) and the state task for the Moscow State University for the topic no. AAAA-A16-116031050014-6 Modern Problems of Chemistry and Physics of High-Molecular-Weight Compounds (investigation of the polymer with a trithiocarbonate group).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Chernikova.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekanova, M.Z., Neumolotov, N.K., Jablanovic, A.D. et al. Radical Substitution of the Dithiocarbonyl Group of Poly(methyl methacrylate) Obtained by Reversible Addition–Fragmentation Chain Transfer Polymerization. Polym. Sci. Ser. C 61, 186–197 (2019). https://doi.org/10.1134/S1811238219010028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238219010028

Navigation