Skip to main content
Log in

Surface improvement effect of silica nanoparticles on epoxy nanocomposites mechanical and physical properties, and curing kinetic

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abtract

In this paper, surface modification was performed on silica nanoparticles using 3-aminopropyl trietoxylsilane (APTES) and surface changes of nanoparticles were investigated using TEM and FE-SEM imaging. Furthermore, its physical and mechanical properties were investigated by building three samples including pure epoxy, epoxy/unmodified nano silica, and epoxy/modified nano silica with weights of 1, 3 and 5% of the nanoparticles to the whole system (epoxy and hardener). The results show that the modified nanoparticles were well dispersed in an epoxy matrix, and elastic modulus has improved. For example in a sample with 5% weight percentage of nano silica, the tensile elastic modulus, yield stress, and failure strain are increased by 77%, 124%, and 32%, respectively. Since the epoxy curing process is an important factor that affects the performance of the cured epoxy, curing process samples were analyzed using DSC. Also, various methods of activation energy were measured at the appropriate kinetic model. The reaction rate equation was obtained for each sample. The modified particles reduce the activation energy of the process compared to the two epoxy and epoxy/unmodified nano silica.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Lee H, Neville K (1967) Handbook of epoxy resins1st edn. McGraw-Hill, New York

    Google Scholar 

  2. Brydson JA (1999) Plastic materials7th edn. Butterworths, Oxford, pp 744–777

    Book  Google Scholar 

  3. Cakic SM, Ristic IS, Jaso VM, Radicvic RZ, Ilic OZ, Simendic JKB (2012) Investigation of the curing kinetics of alkyd melamine–epoxy resin system. Prog Org Coat 73:415–424

    Article  CAS  Google Scholar 

  4. Nonahal M, Rastin H, Saeb MR, Sari MG, Moghadam MH, Zarrintaj P, Ramezanzadeh B (2018) Epoxy/PAMAM dendrimer-modified graphene oxide nanocomposite coatings: nonisothermal cure kinetics study. Prog Org Coat 114:233–243

    Article  CAS  Google Scholar 

  5. Poole CP, Owens FJ (2003) Introduction to nanotechnology. Wiley, Hoboken

    Google Scholar 

  6. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. WILEY-VCH Verlag GmbH & co. KGaA, Weinheim

    Book  Google Scholar 

  7. Wessel JK (2004) Handbook of advanced materials: enabling new designs. Wiley, Hoboken

    Book  Google Scholar 

  8. Lin S-H, Lai S-M, Lin C-M (2016) Preparation and characterization of polystyrene sulfonic acid-co-maleic acid copolymer modified silica nanoparticles. J Polym Res 23:44–55

    Article  Google Scholar 

  9. Biercuk MJ, Johnson AT (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769

    Article  CAS  Google Scholar 

  10. Zhu J (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3:1107–1113

    Article  CAS  Google Scholar 

  11. Kim JA (2006) Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon. 44:1898–1905

    Article  CAS  Google Scholar 

  12. Sarathi R, Sahu RK, Rajeshkumar P (2007) Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites. Mater Sci Eng 445-446:567–578

    Article  Google Scholar 

  13. Jumahat A, Soutis C, Mahmud J, Ahmad N (2012) Compressive properties of nanoclay/epoxy nanocomposites. Process Eng 41:1607–1613

    CAS  Google Scholar 

  14. Roscher C, Adam J, Eger C, Pyrlik M (2002) Novel radiation curable nanocomposites with outstanding material properties. Proc. RadTech, Indiana

  15. Ragosta G, Abbate M, Musto P, Scarinzi G, Mascia L (2005) Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer 46:10506–10516

    Article  CAS  Google Scholar 

  16. Jiao J, Liu P, Wang L, Cai Y (2013) One-step synthesis of improved silica/epoxy nanocomposites with inorganic-organic hybrid network. J Polym Res 20:202–210

    Article  Google Scholar 

  17. Allahverdi A, Ehsani M, Janpour H, Ahmadi S (2012) The effect of nanosilica on mechanical, thermal and morphological properties of the epoxy coating. Prog Org Coat 75:543–548

    Article  CAS  Google Scholar 

  18. Shin D, Banerjee D (2015) Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications. Int J Heat Mass Transf 84:898–902

    Article  CAS  Google Scholar 

  19. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose-based fibers. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  20. Jones RG, Ando W, Chojnouski J (2000) Silicon-containing polymer. Kluwer, New York

    Book  Google Scholar 

  21. Gu H, Guo Y, Wong SY, Li X, Shim VPW (2013) Effect of interphase and strain-rate on the tensile properties of polyamide 6 reinforced with functionalized silica nanoparticles. Compos Sci Technol 75:62–69

    Article  CAS  Google Scholar 

  22. Ma PC (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol 67:2965–2972

    Article  CAS  Google Scholar 

  23. Lavorgna M, Romeo V, Martone A, Zarrelli M, Giordano M, Buonocore GG, Qu MZ, Fei GX, Xia H (2013) Silanization and silica enrichment of multiwalled carbon nanotubes: synergistic effects on the thermal-mechanical properties of epoxy nanocomposites. Eur Polym J 49:428–438

    Article  Google Scholar 

  24. Bryan E (1993) Chemistry and technology of epoxy resins. Springer, Dordrecht

    Google Scholar 

  25. Abdalla MOM, Dean DR, Robinson PA, Nyairo E (2008) Cure behavior of epoxy/MWCNT nanocomposites: the effect of nanotube surface modification. Polymer 49:3310–3317

    Article  CAS  Google Scholar 

  26. Li L, Zou H, Liang M, Chen Y (2014) Study on the effect of poly (oxypropylene) diamine modified organic montmorillonite on curing kinetics of epoxy nanocomposites. Thermochim Acta 597:93–100

    Article  CAS  Google Scholar 

  27. Bi Q, Hao L, Zhang Q, Wang P, Xu P, Ding Y (2019) Study on the effect of amino-functionalized alumina on the curing kinetics of epoxy composites. Thermochim Acta. https://doi.org/10.1016/j.tca.2019.178302

    Article  Google Scholar 

  28. Leelachai K, Konngkachuichay P, Dittanet P (2017) Toughening of epoxy hybrid nanocomposites modified with silica nanoparticles and epoxidized natural rubber. J Polym Res 24:41–51

    Article  Google Scholar 

  29. Sbirrazzuoli N, Vyazovkin S (2002) Learning about epoxy cure mechanisms from isoconversional analysis of DSC data. Thermochim Acta 388:289–298

    Article  CAS  Google Scholar 

  30. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  31. Dukarska D, Bartkowiak M (2016) The effect of organofunctional nanosilica on the cross-linking process and thermal resistance of UF resin. J Polym Res 23:166–173

    Article  Google Scholar 

  32. Wang CS, Lin CH (2000) Novel phosphorus-containing epoxy resins. Part II: Curing kinetics. Polymer 41:8579–8586

    Article  CAS  Google Scholar 

  33. Vyazovkin S (2001) Modification of the integral Isoconversional method to account for variation in the activation energy. J Comput Chem 22:178–183

    Article  CAS  Google Scholar 

  34. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27:1515–1532

    Article  CAS  Google Scholar 

  35. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAK kinetic committee recommendations ffor performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  CAS  Google Scholar 

  36. Pham Q-T, Yu-Xuan Zhan Y-X, Wang F-M, Chern C-S (2019) Mechanisms and kinetics of non-isothermal polymerization of N,N′-bismaleimide-4,4′-diphenylmethane with barbituric acid in dimethyl sulfoxide. Thermochim Acta 676:139–144

    Article  CAS  Google Scholar 

  37. Prime RB (1997) In: Turi EA (ed) Thermal characterization of polymeric materials. Academic, New York

    Google Scholar 

  38. Zvetkov VL (2002) Comparative DSC kinetics of thereaction of DGEBA with aromatic diamines. I: non-isothermal kinetic study of the reaction of DGEBA with mphenylene diamine. Polymer 43:1069–1080

    Article  CAS  Google Scholar 

  39. Lu MG, Shim MJ, Kim SW (2001) Curing reaction and phase change in liquid crystalline monomer. Macromol Chem Phys 202:223–230

    Article  CAS  Google Scholar 

  40. Malek J (1992) The kinetic analysis of nonisothermal data. Thermochim Acta 200:257–269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge research enter of the Islamic Azad University of Sari for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Kamran-Pirzaman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamran-Pirzaman, A., Rostamian, Y. & Babatabar, S. Surface improvement effect of silica nanoparticles on epoxy nanocomposites mechanical and physical properties, and curing kinetic. J Polym Res 27, 13 (2020). https://doi.org/10.1007/s10965-019-1918-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1918-y

Keywords

Navigation