Skip to main content
Log in

Temperature and deformation dependence of structural evolution in polyamide 1010

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyamide 1010 (PA1010) is a representative of long-chain polyamides, used in applications requiring good mechanical, thermal and chemical properties. It has a lower melting point and slightly higher flexible properties compared to nylon 66. Very few reports have been focused on the structures and properties of long-chain polyamides, which brings some troubles on their processing and applications. For the purpose of understanding mechanical changes within different temperature interval, dynamic structure transition of PA1010 was investigated by wide-angle X-ray diffractometer (WAXD) equipped with a hot stretching stage. During the process of the simultaneous thermal stretched, in addition to the Brill transition phenomenon, it was also accompanied by changes in crystallinity, orientation and tensile force. Both annealing and stretching can promote crystallization, in addition, stretching can also induce and destroy crystallization. With stretch ratios increasing, the crystallinity increases firstly, reaches the maximum when stretch ratio is 2.25 times and then decreases. The degree of orientation increase firstly but increase poorly after 2.50 times. The stretch force increase gradually too. The stretch force has a stronger ability than temperature to induce the PA1010 undergo the Brill transition. The presented results show that Brill transition is completed and the α-crystal structure completely transformed into γ-crystal structure when the stretch ratio is 2.50 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kohan M I. Nylon plastics handbook. Hanser Publishers, Hanser/Gardner Publications, 1995

  2. Morgan PW (1965) Condensation polymer: by interfacial and solution methods. Journal of the Society of Dyers & Colourists 10(3):259

    Google Scholar 

  3. Zhang Y, Chen Y X. Polymerization of Nonfood Biomass-Derived Monomers to Sustainable Polymers. Selective Catalysis for Renewable Feedstocks and Chemicals. Springer International Publishing, 2014:185

  4. Yassir A (2014) Eltahir, Haroon a.M. Saeed, Chen Yuejun, Yumin Xia, Saeed H a M, Chen Y, et al. parameters characterizing the kinetics of the non-isothermal crystallization of polyamide 5,6 determined by differential scanning calorimetry. J Polym Eng 34(4):353–358

    Google Scholar 

  5. Wang Q, Shao Z, Yu T (1996) The synthesis and characterization of polyethylene succinamide (polyamide 24). Polym Bull 36(6):659–665

    CAS  Google Scholar 

  6. Liu YJ, Yan DY (2001) Preparation, characterization and crystalline transition behaviors of polyamide 4 14. Polymer 42(11):5055–5058

    Google Scholar 

  7. Ramesh C (1999) Crystalline transitions in nylon 12. Macromolecules 32(17):5704–5706

    CAS  Google Scholar 

  8. Biangardi HJ (2006) Brill transition of polyamide 6.12. Journal of Macromolecular Science Part B 29(2–3):139–153

    Google Scholar 

  9. Zhang G, Watanabe T, Yoshida H et al (2003) Phase transition behavior of Nylon-66, Nylon-48, and blends. Polym J 35(2):173–177

    CAS  Google Scholar 

  10. Liu X, Wu Q (2002) Phase transition in nylon 6/clay nanocomposites on annealing. Polymer 43(6):1933–1936

    CAS  Google Scholar 

  11. Wang L, Dong X, Huang M et al (2017) The effect of microstructural evolution during deformation on the post-yielding behavior of self-associated polyamide blends. Polymer 117:231–242

    CAS  Google Scholar 

  12. Ran S, Cruz S, Zong X, et al (1997) Structure Development during the Heat-Draw Process of Nylon 66 Fiber by Synchrotron X-ray Diffraction. Adv. X-ray Anal 43:313–318

  13. Elzein T, Brogly M, Schultz J (2002) Crystallinity measurements of polyamides adsorbed as thin films. Polymer 43(17):4811–4822

    CAS  Google Scholar 

  14. Colclough ML, Baker R (1978) Polymorphism in nylon 66. J Mater Sci 13(12):2531–2540

    CAS  Google Scholar 

  15. Rahbar RS, Mojtahedi MRM (2011) Influence of hot multistage drawing on structure and mechanical properties of nylon 6 multifilament yarn. Journal of Engineered Fibers & Fabrics 6(2):7–15

    CAS  Google Scholar 

  16. Yang J, Liu S, Guo X et al (2001) Structural studies of nylon 1010 treated at atmospheric and high pressures. Polym J 33(10):821–824

    CAS  Google Scholar 

  17. Wang ZG, Hsiao BS, Murthy NS (2010) Comparison of intensity profile analysis and correlation function methods for studying the lamellar structures of semi-crystalline polymers using small-angle X-ray scattering. J Appl Crystallogr 33(3–1):690–694

    Google Scholar 

  18. Li L, Yang G (2010) Variable-temperature FTIR studies on thermal stability of hydrogen bonding in nylon 6/mesoporous silica nanocomposite. Polym Int 58(5):503–510

    Google Scholar 

  19. Hatfield GR, Glans JH, Hammond WB (1990) Characterization of structure and morphology in nylon 6 by solid-state carbon-13 and nitrogen-15 NMR. Macromolecules 23(6):1654–1658

    CAS  Google Scholar 

  20. Cartledge HCY, Baillie CA (2002) Effects of crystallinity, transcrystallinity and crystal phases of GF/PA on friction and wear mechanisms. J Mater Sci 37(14):3005–3022

    CAS  Google Scholar 

  21. Jones NA, Cooper SJ, Atkins EDT et al (2015) Temperature-induced changes in chain-folded lamellar crystals of aliphatic polyamides. Investigation of nylons 2 6, 2 8, 2 10, and 2 12. Journal of Polymer Science Part B Polymer Physics 35(4):675–688

    Google Scholar 

  22. Hsieh Y, Hu X (2015) Structural transformation of ultra-high modulus and molecular weight polyethylene fibers by high-temperature wide-angle X-ray diffraction. Journal of Polymer Science Part B Polymer Physics 35(4):623–630

    Google Scholar 

  23. Li W, Zhang G, Huang Y et al (2003) Different crystalline transition behavior in polyamides 12 16, l0 16 and 8 16. Polym Bull 49(5):387–394

    CAS  Google Scholar 

  24. Jones NA, Atkins EDT, Hill MJ (2000) Comparison of structures and behavior on heating of solution-grown, chain-folded lamellar rystals of 31even−even nylons. Macromolecules. 33(7):2642–2650

    CAS  Google Scholar 

  25. Li W, Yan D (2006) Crystal structures of polyamides X 18 made from long alkyl dicarboxylic acid. Cryst Growth Des 6(9):2182–2185

    CAS  Google Scholar 

  26. Jones NA, Atkins EDT, Hill MJ (2000) Investigation of solution-grown, chain-folded lamellar crystals of the even-even nylons: 6 6, 8 6, 8 8, 10 6, 10 8, 10 10, 12 6, 12 8, 12 10 and 12 12. Polymer Science B: Polymer Physics 38:1209–1221

    CAS  Google Scholar 

  27. Feldman AY, Wachtel E, Vaughan GBM et al (2006) The brill transition in Transcrystalline Nylon-66. Macromolecules. 39(13):4455–4459

    CAS  Google Scholar 

  28. Li Y, Yan D, Zhu X (2001) Crystal forms of nylon 10 12 crystallized from melt and after solution casting. Eur Polym J 37(9):1849–1853

    CAS  Google Scholar 

  29. Li Y, Zhu X, Tian G et al (2001) Multiple melting endotherms in melt-crystallized nylon 1012. Polym Int 50(6):677–682

    CAS  Google Scholar 

  30. Morales-Gámez L, Soto D, Franco L et al (2010) Brill transition and melt crystallization of nylon 56: an odd–even polyamide with two hydrogen-bonding directions. Polymer. 51(24):5788–5798

    Google Scholar 

  31. Cui X, Yan D (2005) Preparation, characterization and crystalline transitions of odd–even polyamides 11, 12 and 11, 10. Eur Polym J 41(4):863–870

    CAS  Google Scholar 

  32. Villasenor P, Franco L, Subirana JA et al (1999) On the crystal structure of odd--even nylons: polymorphism of nylon 5,10. J Polym Sci B Polym Phys 37(17):2383–2395

    CAS  Google Scholar 

  33. Morales-Gámez L, Casas MT, Franco L et al (2013) Structural transitions of nylon 47 and clay influence on its crystallization behavior. Eur Polym J 49(6):1354–1364

    Google Scholar 

  34. Zhang Q, Mo Z, Zhang H et al (2001) Crystal transitions of nylon 11 under drawing and annealing. Polymer 42(13):5543–5547

    CAS  Google Scholar 

  35. Zhang Q, Mo Z, Siyang Liu A et al (2000) Influence of annealing on structure of nylon 11. Macromolecules 33(16):5999–6005

    CAS  Google Scholar 

  36. Mo ZS, Zhang HF, Meng QB, Xie XF, Zhang LH (1990) The crystal structure of Nylon-1010. Acta Polym Sin 06:655–660

    Google Scholar 

  37. Zhu CS, Zhai ZC, Yang BQ, Mo ZS (1993) Determination of crystallinity of nylon 1010 by X-ray diffraction method. Acta Polym Sin 06:655–659

    Google Scholar 

  38. Zhu CS, Mo ZS, Yan ZZ (1993) Crystal structure of isothermal melt crystalline nylon 1010. Acta Polym Sin 04:410–414

    Google Scholar 

  39. Zhu CS, Wang JW, Yang GP, Mo ZS, Li LX, Yang BQ (1993) Study on the crystallization and melting behavior of nylon 1010. Acta Polym Sin 02:165–171

    Google Scholar 

  40. Huang XY, Mo ZS, Gao H, Wang LQ, Yan ZC, Zhu CS (1994) The aggregation structure of Nylon-1010. Acta Polym Sin 01:60–64

    Google Scholar 

  41. Mo ZS, Yang BQ, Xue XF, Zhang LH (1992) X-ray scattering studies on Nylon-1010. Chin J Polym Sci 03:230–235

    Google Scholar 

  42. Mo ZS, Yang BQ, Xue XF, Meng ZF, Wang YM (1991) Study on Nylon-1010 SAXS. Chin J Appl Chem 06:33–36

    Google Scholar 

  43. Yoshioka Y, Tashiro K, Ramesh C (2003) Structural change in the brill transition of nylon m/n, (2) conformational disordering as viewed from the temperature-dependent infrared spectral measurements. Polymer 44(20):6407–6417

    CAS  Google Scholar 

  44. Tashiro K, Yoshioka Y (2004) Molecular dynamics simulation of the structural and mechanical property changes in the brill transition of nylon 10/10 crystal. Polymer 45(12):4337–4348

    CAS  Google Scholar 

  45. Tashiro K, Yoshioka Y (2004) Conformational disorder in the brill transition of uniaxially-oriented nylon 10/10 sample investigated through the temperature-dependent measurement of X-ray fiber diagram. Polymer 45(18):6349–6355

    CAS  Google Scholar 

  46. Yoshioka Y, Tashiro K (2003) Structural change in the brill transition of nylon m/n (1) nylon 10/10 and its model compounds. Polymer 44(22):7007–7019

    CAS  Google Scholar 

  47. Wang JK, Zhao GS, Zhou YC (2011) Stretching crystallization behavior and brill transition of nylon 1010. Chem Res Chin Univ 32(05):1225–1230

    CAS  Google Scholar 

  48. Yan CJ, Tian XY, Cui P, Zheng J, Zhang X, Zheng K, Li Y (2007) Study on crystallization and morphology of PET/SiO2 Nanocomposites. Journal of Polymer Materials Science and Engineering 04:159–162

    Google Scholar 

  49. Zhu C S. Polymer Structure Analysis. Beijing, Science Press, 2004

  50. Mo Z S, Zhang H F, Zhang J D. Static polymer structure and X-ray diffraction. Beijing, Science Press, 2010

  51. Wang HY, Liu TJ, Liu SF et al (2011) Thermal and mechanical properties of stretched recyclable polyimide film. J Appl Polym Sci 122(1):210–219

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Liu, W., Liu, H. et al. Temperature and deformation dependence of structural evolution in polyamide 1010. J Polym Res 26, 284 (2019). https://doi.org/10.1007/s10965-019-1955-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1955-6

Keywords

Navigation