Skip to main content
Log in

Three-Dimensional Numerical Simulation of Meso-Scale-Void Formation during the Mold-Filling Process of LCM

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Voids formed during liquid composite molding significantly degenerates mechanical performances of the final products, accurate prediction of the formation and size of void has significance for the parameter design of LCM. However, the 3D simulation method of void formation, in which the complex interconnecting of pores can be fully considered, has not been developed. In order to analyze the meso-scale-void formation process in full dimensionality, the mechanisms of dual-scale flow and void formation are analyzed firstly in this paper, then the mathematical models for the two-phase inter-tow and intra-tow flow are established based on the VOF theory. During numerical solving, the 3D geometry model is used and the momentum source of capillary force is updated in real-time to guarantee the simulation accuracy. The simulated formation process and size of meso-scale-void are compared with experimental results to verify the effectiveness and correctness of the developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu, B., Bickerton, S., Advani, S.G.: Modelling and simulation of resin transfer moulding (RTM)- gate control, venting and dry spot prediction. Composite Part A. 27(2), 135–141 (1996)

    Article  Google Scholar 

  2. Han, K., Lee, L.J.: Dry spot formation and changes in liquid composite molding: I- experimental. J. Compos. Mater. 30, 1458–1474 (1996)

    Article  Google Scholar 

  3. Han, K., Lee, L.J., Nakamura, S., Shafi, A., White, D.: Dry spot formation and changes in liquid composite molding: II- modeling and simulation. J. Compos. Mater. 30(13), 1475–1493 (1996)

    Article  Google Scholar 

  4. Rohatgi, V., Patel, N., Lee, L.J.: Experimental investigation of flow induced microvoids during impregnation of unidirectional stitched fiberglass mat. Polym. Compos. 17(2), 161–170 (1996)

    Article  Google Scholar 

  5. Patel, N., Rohatgi, V., Lee, L.J.: Micro scale flow behavior and void formation mechanism during impregnation through a unidirectional stitched fiberglass mat. Polym. Eng. Sci. 35(10), 837–851 (1995)

    Article  Google Scholar 

  6. Park, C.H., Lee, W.I.: Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review. J. Reinf. Plast. Compos. 30(11), 957–977 (2011)

    Article  Google Scholar 

  7. Yoshida, H.T., Ogasa, T., Hayashi, R.: Statistical approach to the relationship between ILSS and void content of CFRP. Compos. Sci. Technol. 25, 3–18 (1986)

    Article  Google Scholar 

  8. Harper, B.D., Staab, G.H., Chen, R.S.: A note on the effects of voids upon the hygral and mechanical properties of AS4/3502 graphite/epoxy. J. Compos. Mater. 21, 281–289 (1987)

    Google Scholar 

  9. Bowles, K.J., Frimpong, S.: Void effects on the interlaminar shear strength of unidirectional graphite-fibre-reinforced composites. J. Compos. Mater. 26(10), 1487–1509 (1992)

    Article  Google Scholar 

  10. Olivier, P., Cottu, J.P., Ferret, B.: Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates. Composites. 26, 509–515 (1995)

    Article  Google Scholar 

  11. Madsen, B., Lilholt, H.: Physical and mechanical properties of unidirectional plant fibre composites- an evaluation of the influence of porosity. Compos. Sci. Technol. 63, 1265–1272 (2003)

    Article  Google Scholar 

  12. Park, C.H., Lebel, A., Saouab, A., Bréard, J., Lee, W.I.: Modeling and simulation of voids and saturation in liquid composite molding processes. Composites Part A. 42, 658–668 (2011)

    Article  Google Scholar 

  13. Mahale, A.D., Prud'homme, R.K., Rebenfeld, L.: Quantitative measurement of voids formed during liquid impregnation of nonwoven multifilament glass networks using an optical visualization technique. Polym. Eng. Sci. 32(5), 319–326 (1992)

    Article  Google Scholar 

  14. Lundstrom, T.S., Gebart, B.R., Lundemo, C.Y.: Void formation in RTM. J. Reinf. Plast. Compos. 12, 1339–1349 (1993)

    Article  Google Scholar 

  15. Lundstrom, T.S., Gebart, B.R.: Influence from process parameters on void formation in RTM. Polym. Compos. 15(1), 25–33 (1994)

    Article  Google Scholar 

  16. Patel, N., Lee, L.J.: Effects of fiber mat architecture on void formation and removal in liquid composite molding. Polym. Compos. 16(5), 386–399 (1995)

    Article  Google Scholar 

  17. Kedari, V.R., Farah, B.I., Hsiao, K.T.: Effects of vacuum pressure, inlet pressure, and mold temperature on the void content, volume fraction of polyester/e-glass fiber composites manufactured with VARTM process. J. Compos. Mater. 45(26), 2727–2742 (2011)

    Article  Google Scholar 

  18. Matsuzaki, R., Seto, D., Todoroki, A., Mizutani, Y.: Void formation in geometry anisotropic woven fabrics in resin transfer molding. Adv. Compos. Mater. 23(2), 99–114 (2014)

    Article  Google Scholar 

  19. Ruiz, E., Achim, V., Soukane, S., Trochu, F., Bréard, J.: Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites. Composites Part A. 66(3–4), 475–486 (2006)

    Google Scholar 

  20. Leclerc, J.S., Ruiz, E.: Porosity reduction using optimized flow velocity in resin transfer molding. Composites Part A. 39(12), 1859–1868 (2008)

    Article  Google Scholar 

  21. LeBel, F., Fanaei, A.E., Ruiz, É., Trochu, F.: Prediction of optimal flow front velocity to minimize void formation in dual scale fibrous reinforcements. Int. J. Mater. Form. 7, 93–116 (2014)

    Article  Google Scholar 

  22. Ravey, C., Ruiz, E., Trochu, F.: Determination of the optimal impregnation velocity in resin transfer molding by capillary rise experiments and infrared thermography. Compos. Sci. Technol. 99, 96–102 (2014)

    Article  Google Scholar 

  23. Kang, M.K., Lee, W.I., Hahn, H.T.: Formation of microvoids during resin-transfer molding process. Compos. Sci. Technol. 60, 2427–2434 (2000)

    Article  Google Scholar 

  24. Lee, D.H., Lee, W.I., Kang, M.K.: Analysis and minimization of void formation during resin transfer molding process. Compos. Sci. Technol. 66, 3281–3289 (2006)

    Article  Google Scholar 

  25. Gourichon, B., Binetruy, C., Krawczak, P.: A new numerical procedure to predict dynamic void content in liquid composite molding. Composite Part A. 37(11), 1961–1969 (2006)

    Article  Google Scholar 

  26. Gourichon, B., Deléglise, M., Binetruy, C., Krawczak, P.: Dynamic void content prediction during radial injection in liquid composite molding. Composite Part A. 39, 46–55 (2008)

    Article  Google Scholar 

  27. Schell, J.S.U., Deleglise, M., Binetruy, C., Krawczak, P., Ermanni, P.: Numerical prediction and experimental characterisation of meso-scale- voids in liquid composite moulding. Composite Part A. 38, 2460–2470 (2007)

    Article  Google Scholar 

  28. Yang, B., Jin, T., Bi, F., Wei, Y., Li, J.: Influence of fabric shear and flow direction on void formation during resin transfer molding. Composite Part A. 68, 10–18 (2015)

    Article  Google Scholar 

  29. Matuzaki, R., Seto, D., Naito, M., Todoroki, A., Mizutani, Y.: Analytical prediction of void formation in geometrically anisotropic woven fabrics during resin transfer molding. Compos. Sci. Technol. 107, 154–161 (2015)

    Article  Google Scholar 

  30. Matuzaki, R., Naito, M., Seto, D., Todoroki, A., Mizutani, Y.: Analytical prediction of void distribution and a minimum-void angle in anisotropic fabrics for radial injection resin transfer molding. Express Polym Lett. 10(10), 860–872 (2016)

    Article  Google Scholar 

  31. Chang, C.Y., Shih, M.S.: Numerical simulation on the void distribution in the Fiber Mats during the filling stage of RTM. J. Reinf. Plast. Compos. 22, 1437–1454 (2003)

    Article  Google Scholar 

  32. Hu, J.L., Liu, Y., Shao, X.M.: Study on void formation in multi-layer woven fabrics. Composite Part A. 35, 595–603 (2004)

    Article  Google Scholar 

  33. DeValve, C., Pitchumani, R.: Simulation of void formation in liquid composite molding processes. Composite Part A. 51, 22–32 (2013)

    Article  Google Scholar 

  34. Arcila, I.D.P., Power, H., Londono, C.N., Escobar, W.F.F.: Boundary element simulation of void formation in fibrous reinforcements based on the stokes-Darcy formulation. Comput. Methods Appl. Mech. Eng. 304, 265–293 (2016)

    Article  Google Scholar 

  35. Hirt, C.W., Nichols, B.D.: Volum-of-fluid(VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  Google Scholar 

  36. Gebart, B.R.: Permeability of unidirectional reinforcements for RTM [J]. J. Compos. Mater. 26(8), 1100–1133 (1992)

    Article  Google Scholar 

  37. Zhang, Y.W., Faghri, A.: Numerical simulation of condensation on a capillary grooved surface. Numer. Heat Transfer, Part A Appl. 39(3), 227–243 (2001)

    Article  Google Scholar 

  38. Young, W.B.: The effect of surface tension on tow impregnation of unidirectional fibrous perform in resin transfer molding [J]. J. Compos. Mater. 30(11), 1191–1209 (1996)

    Article  Google Scholar 

  39. Foley, M.E., Gillespie, J.W.: Modeling the effect of fiber diameter and fiber bundle count on tow impregnation during liquid molding processes [J]. J. Compos. Mater. 39(12), 1045–1065 (2005)

    Article  Google Scholar 

  40. Yang, B., Jin, T.L., Zheng, L.: Permeability prediction for textile preform with micro-meso dual-scale unit cell. Acta Materiae Compositae Sin. 30(5), 209–217 (2013) (In Chinese)

    Google Scholar 

  41. Lomov, S.V., Verpoest, I., Peeters, T., Roose, D., Zako, M.: Nesting in textile laminates: geometrical modelling of the laminate. Compos. Sci. Technol. 63(7), 993–1007 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The presented work was supported by the National Natural Science Foundation of China (grant number 51605057, 51575139); the Fundamental and Frontier Research Project of Chongqing (grant number cstc2016jcyjA0456); the Fundamental Research Funds for the Central Universities (grant number 2018CDQYJX0013); the Postdoctoral Foundation Project of Chongqing (grant number Xm2016058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Yang, B., Wang, S. et al. Three-Dimensional Numerical Simulation of Meso-Scale-Void Formation during the Mold-Filling Process of LCM. Appl Compos Mater 26, 1121–1137 (2019). https://doi.org/10.1007/s10443-019-09770-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-019-09770-w

Keywords

Navigation